
11/23/2011 10:55 AM 1

Toward an integrative software infrastructure for water management in

the Smarter Planet

Barbara Eckman
1
, Mark Feblowitz

2
, Alex Mayer

3
, Anton Riabov

4

Abstract

Building the Smarter Planet requires creating an Intelligent Infrastructure that integrates technology

with business, government, and the everyday life of the citizens of earth, to maximize the use of scarce

resources, balance human use and ecosystem preservation, reduce costs, and improve quality of life.

One of the keystones of this Intelligent Infrastructure is an Integrative Modeling Framework (IMF), a

platform to enable the integration by non-expert users of diverse, sensor-based data, related business

data, and complex, cross-disciplinary mathematical modeling, in support of planning, monitoring,

management, reporting, and decision support applications. We describe a research prototype that

applies the Mashup Automation with Runtime Invocation & Orchestration (MARIO) technology from

IBM Research to this problem in a specific application area in water management: simulating stream

discharges using compositions of hydrologic process submodels derived from monolithic stream

discharge simulators. We show how MARIO’s semantic tagging and model composition engine enable

us to meet three critical challenges of an IMF: 1) generating valid chain(s) or compositions of model

components, given a definition of starting and ending states ; 2) allowing all scientifically valid

compositions of components; and 3) disallowing compositions that are scientifically invalid, i.e., that

combine model components whose basic assumptions about quantities like soil architectures or

evaporation schemes conflict. While we focus here on water management , the technology that we

describe is readily generalizable to other Intelligent Infrastructure applications, e.g., cities,

transportation, and utilities.

Introduction

Building the Smarter Planet requires creating an Intelligent Infrastructure that integrates technology

with business, government, and the everyday life of the citizens of earth, to maximize the use of scarce

resources, balance human use and ecosystem preservation, reduce costs, and improve quality of life.

Bringing intelligence to these interactions requires an unprecedented degree of integration of

heterogeneous data, analytics and simulations. One of the keystones of this Intelligent Infrastructure is

therefore an Integrative Modeling Framework (IMF), an infrastructure platform to enable the

integration by non-expert users of diverse, sensor-based data, related business data, and complex,

cross-disciplinary mathematical modeling, in support of planning, monitoring, management, reporting,

1
 PO Box X, Wayne, PA 19087; barbarae@alumni.princeton.edu

2
 IBM T.J. Watson Research Center, Cambridge, MA 02142; mfeb@us.ibm.com

3
 Michigan Technological University, Houghton, MI 49931; asmayer@mtu.edu

4
 IBM T.J. Watson Research Center, Hawthorne, NY 10532; riabov@us.ibm.com

11/23/2011 10:55 AM 2

and decision support applications. For example, critical to the technology foundation for the

development and operation of Smart Cities is the integration of a wide variety and volume of data and

the application of a correspondingly wide variety of analytics and simulations to interpret this data,

make predictions based on it, and optimize business processes that act on it.[1] In the domain of water

management, policy makers and other stakeholders need to assess, come to consensus, and act on land-

use decisions that balance human use and ecosystem preservation/restoration. These decisions require

input from models from a wide variety of environmental sectors, including water balance, water quality,

carbon balance, crop production, and proxies for biodiversity.[2] But model codes are typically written

in a monolithic fashion which does not support building large integrated models out of a set of model

components. Furthermore, in the relatively rare case where codes are modularized, a common

framework is lacking which can provide a consistent interface for passing data, as well as a language in

which to express rules about which components may validly be integrated.

A number of approaches have been developed for integration of data sources and/or services, such as

Service-Oriented Architecture (SOA), Enterprise Service Bus (ESB), Service Component Architecture

(SCA) and Extract, Transform, Load (ETL). All of these technologies are relevant to an integrative

modeling framework and address important needs, providing execution environments, connectivity,

service catalogs, interface contracts, and data transformation. In this paper we present a new approach

to describing components that makes it possible to exclude invalid compositions of model components

based not just on interface contracts but also on semantic constraints. As illustrated in Figure 1, our

approach complements these technologies and can be best applied in combination with all or some of

them.

In this work, we describe a research prototype that applies IBM research technology to the problem of

model integration in a specific application area: simulating stream discharges. We choose this

application area because we have a deep understanding of the needs and issues involved in stream

discharge simulation, and therefore the research technology applied to it will be challenged and

stretched by its requirements. Nevertheless , the technology that we describe is readily generalizable to

other Intelligent Infrastructure applications, e.g., cities, transportation, and utilities.

The reference software architecture we propose for an Intelligent Infrastructure is shown in Figure 1, a

variation on that of [3]. A Service-Oriented Architecture, it integrates (near-) real-time sensor data,

analytics, and controls with enterprise data, applications, analytics, modeling/simulation, and user

interfaces/visualization. It comprises three Enterprise Service Buses, specialized for (from bottom to

top): 1) Sensor Level: Event/Data Capture, Analytics, Pattern Recognition, Control; 2) Operational Level:

Business Processes, Workflow, Modeling, Contingencies and Analytics; and 3) Enterprise Level:

Visualization, Simulation, Process Optimization, Planning, Deep Insight. An orange box in the upper

right highlights the portion of the architecture on which this paper focuses: managing model

components and the metadata and rules that govern their composition into workflows or chains of

model components that comprise simulations. To our knowledge, this functionality is lacking in existing

modeling frameworks but it is critical for an Intelligent Infrastructure IMF, particularly one whose target

users are not expert modelers.

11/23/2011 10:55 AM 3

In the specific area of estimating streamflow, there are a variety of well-respected models, each with

different assumptions about such concepts as soil architecture and how best to correct for error in

estimating effective precipitation. We are developing a flexible, extensible modeling framework to

enable non-expert modelers to define and run multi-step analytic simulations for river basin

management, based on the Mashup Automation with Runtime Invocation & Orchestration (MARIO)

project from IBM Research. In this framework, we divide monolithic models into atomic components

with clearly defined semantics encoded via rich metadata representation. Once models and their

semantics and composition rules have been registered with the system by their authors or other

experts, non-expert users may construct simulations as workflows of these atomic model components.

A model composition engine enforces rules/constraints for composing model components into

simulations, to avoid the creation of Frankenmodels, models that execute but produce scientifically

invalid results.

This paper is organized as follows. We begin in the Motivation section by describing the basic concepts

of hydrology and motivating the need for an IMF in that field. Next we describe the Framework for

Understanding Structural Errors (FUSE)[4], a system in which four parent stream discharge models have

been componentized, allowing the components to be assembled into new models. We view this work

both as a case study for the need for an IMF in hydrology (Case Study: FUSE section), and as an excellent

source of model components for our work. Next, we summarize the underlying MARIO technology

(MARIO: A New Approach to Model Integration) and describe how we defined MARIO-ready

composable components based on FUSE, taking advantage of MARIO’s metadata capabilities to

represent necessary constraints on compositions of model components (Applying MARIO to FUSE). Next

we describe the results of this application (Results). The Discussion section highlights what we see as the

primary advantages of our approach, and describes our plans for further research. The Conclusion

summarizes the contributions of the paper.

Motivation

In order to motivate the need for an IMF in the hydrology field, we must first introduce some hydrology

basics.

A Hydrology Primer

Hydrology is the science that encompasses the occurrence, distribution, movement and properties of

water and the relationship of water with environmental and human systems. The hydrologic cycle is a

continuous process where water is evaporated and transported from the earth's surface to the

atmosphere and back to the land and oceans. Within the hydrologic cycle, water is subjected to physical,

chemical and biological processes as it travels various paths through the atmosphere and the earth's

surface. Figure 2 illustrates some of the processes and storage reservoirs in the hydrologic cycle,

including the principle that energy, via solar radiation, drives the cycling of water between the earth’s

surface and the atmosphere.

Current, critical issues in hydrology include determining how fresh water distribution over and through

and on the land surface may be impacted as a result of climate change and how the cycling of water

11/23/2011 10:55 AM 4

influences patterns of ecosystem carbon and nutrient cycling. Given the intensive nature of human

inter-relationships with the hydrologic cycle, hydrologists and water resources managers are concerned

with adapting water management strategies to variations in the hydrologic cycle, induced by natural or

anthropogenic changes in land cover and climate.

Hydrologic modeling, which encompasses the movement and storage of water through the hydrologic

cycle, can be a powerful tool for exploring issues of interest to hydrologists and water managers. In this

work, we are narrowing the scope to consider models whose primary function is to simulate stream

flows, or discharges, in response to precipitation events (e.g. rain storm or snow melt events), although

we believe our approach to be generally applicable, both to wider hydrologic modeling issues and to

other Intelligent Infrastructure domains. Stream discharge simulations are used to understand and

make predictions concerning water supply availability, including support for water banking and

groundwater recharge, flood events, hydroelectric power generation, and ecosystem interactions, such

as relationships between fish survival and flow magnitude and timing.

Approaches for modeling stream discharge vary widely in terms of how the models conceptually and

mathematically represent the physical processes that govern the distribution and movement of water

over and through the land surface. The models are typically applied over a watershed or basins that can

range in size from a few to millions of square kilometers. Simulations are run over time scales that

range from a matter of minutes to months to years. A typical model development exercise involves

conceptualization of the hydrologic system, definition of the relevant model equations, writing

computer codes, assembly of input information, and calibration of model tuning parameters against

observed discharges. The calibrated models are used to forecast stream discharges under a variety of

climatic or land cover conditions.

The models usually operate by separating precipitation entering the land surface into various fluxes,

such as (1) water that flows on or under the land surface and eventually into a stream channel, (2) water

that evaporates or transpires from the land surface or through vegetation into the atmosphere, and (3)

water that percolates into the underlying groundwater. Model operation also usually involves dividing

the physical system into a number of compartments. Water can be stored within compartments. Water

fluxes describe the movement of water in, out, and between compartments.

Water balance equations are written for each compartment, as in

 = −∑ ∑in out

dS
q q

dt

where dS dt is the time rate of change of storage, S, of water in a compartment, qin represents the

fluxes of water entering a compartment, and qout represents the fluxes leaving a compartment. The flux

terms typically consist of empirically-derived equations that depend on state variables such as storage

and temperature and empirical parameters. The empirical parameters are usually derived by calibrating

the model against stream discharge observations. Water balance equations typically must be solved

using numerical approximations. A typical model may involve several, coupled water balance equations.

11/23/2011 10:55 AM 5

Figure 3 a) shows an example of a model that divides the soil between the land surface and a near-

surface groundwater aquifer into two layers, each with its own water balance equation.

There are many sources of uncertainty involved in the development of stream discharge models,

including errors in the conceptualization of the system. One promising approach to contending with this

uncertainty is to use an ensemble of models to make predictions of streamflows, also known as multi-

modeling. Multi-modeling is attractive in that the ensemble mean of all model outputs combines the

strengths of each model, generating an output that is more robust than a single model,. Combining

model outputs could be as simple as averaging the stream discharges estimated by each model or could

incorporate error estimates obtained during model calibration, as in

 =∑ k kF w f

where F is the ensemble mean stream discharge, fk is the result of kth model, and wk is the weight of

the kth model, related to model’s correlation with observations during calibration.

Stream discharge codes, and indeed codes used for other aspects of water management, can be built in

a modular fashion. Code modules can be written for each water balance equation and flux equation,

with the appropriate data being passed between each module. If codes are written in a modular format

and data structures are consistent, modules can be swapped in and out of the models and modules

representing different processes can be added. For example, the system represented in Figure 3 a) does

not include a conceptual representation of canopy interception storage (the part of precipitation that is

captured and held by vegetation). An appropriate canopy interception module would have atmospheric

precipitation as input and would, in principle, output precipitation onto the soil surface and into the

upper soil water balance equation.

Historically, stream discharge model development has occurred through different groups in academic

institutions and government agencies, often with little communication among the groups. As a result,

many models have been developed, each with its strength and weaknesses. In addition, codes have

often been written in a monolithic fashion, and, in the case where codes are modularized, code

structures for passing data are not consistent from model to model. This practice has led to several

inefficiencies, including the need to customize input data to suit each model and to write specialized

code to allow the models or pieces of the models to pass data among each other.

The Need for an Integrative Modeling Framework

To facilitate modeling in the hydrology community and the exchange of modeling ideas and best

practices, it is necessary to provide a flexible, extensible modeling framework infrastructure for defining

and running multi-step analytic simulations, and integrating them with real-time sensor data. This

approach requires the division of extant (typically monolithic) discipline-specific models into atomic

model components. Cross-disciplinary simulations may then be expressed as workflows specified as

chains or compositions of components. Unlike other existing modeling frameworks, our framework is

intended to support non-expert modelers. Since models can be built on different or even conflicting

assumptions and definitions of key terms, not all compositions of components represent scientifically

valid simulations. It is critical not to allow formation of Frankenmodels, compositions of incompatible

11/23/2011 10:55 AM 6

components that produce scientifically invalid simulations. This requires a rich metadata specification

for representing model semantics and expressing rules/constraints for combining model components.

Additional requirements are a software environment for modeling framework development, and an

adapter strategy for non-Java code (e.g., FORTRAN, Python) that still enables efficient simulation runs,

including parallelization of component execution.

An IMF would allow for modules to be written to a published interface and then to be re-assembled to

form completely new models, as long as the structures for passing data in and out of the models were

consistent. Initially this approach would involve extracting component modules from the various parent

stream discharge codes, but we expect that soon model developers will write directly to the interface.

This approach would potentially enhance the robustness of multi-modeling efforts.

Several groups have attempted to develop IMFs for hydrologic modeling. Leavesley et al.

[5] developed

the Unix-based Modular Modeling System (MMS) to support development of hydrologic process

algorithms and the integration of user-selected sets of algorithms into operational hydrologic models.

Designed to facilitate integration of existing modelling systems, the OpenMI project focuses on defining

a standardized interface to pass data among models and model components.[6] More recently, the

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is launching an

effort towards the development of a Community Hydrologic Modeling Platform (CHyMP).

[7] The

general thrust of CHyMP is to promote a community-based effort to develop modular components of

the hydrologic cycle that can be integrated into useful models and modeling and used in advanced

hydrologic research. Clark et al.

have developed the Framework for Understanding Structural Errors

(FUSE)[4], which focuses primarily on multi-modeling. In this work, the authors componentized four

parent stream discharge models and manually combined the components into new models. The

following section explains the FUSE methodology.

Case Study: FUSE

In Clark et al.’s FUSE code, individual flux equations are modularized, rather than linking existing sub-

models, as is done in the MMS effort . In FUSE, modeling options are drawn from four parent rainfall-

runoff models (Figure 3 b-e), denoted here as the PRMS, Sacramento, TOPMODEL, and ARNO/VIC

models (see [4] for the full name and citations for each model). The parent models include several

processes that interact with the subsurface, such as vegetation storage, but for simplicity, only fluxes

within the subsurface are considered. In each model, the subsurface is divided into two layers: the

unsaturated layer, or upper soil layer (above the water table), and the saturated layer, or lower soil layer

(below the water table). Each parent model describes the architecture of the upper and lower soil layer

and equations for simulating fluxes: evaporation, surface runoff, percolation of water between soil

layers, interflow, and base flow. The layer architecture refers to the subdivision of the water storage

into from one to three compartments. The equations for simulating fluxes for a given process vary in

terms of the algebraic equations and the parameters and state variables needed to calculate the fluxes.

The parent models are simplified somewhat to allow for as many processes as possible to be

modularized and interchangeable and incorporated into new models that are re-assembled from the

11/23/2011 10:55 AM 7

resulting modules. We used a more recent version of the FUSE code than described in Clark et al., which

includes several more model building choices. The model building options are given in Table 1. The

number of possible models built by simply choosing one option for each calculation in Table 1 exceeds

250,000. However, the vast majority of model decisions, e.g., selection of flux equations, are tied to

preliminary decisions such as the choice of soil layer architecture. When model compositions are

removed that involve incompatible model components, 316 valid models can be constructed. Note that

in FUSE, scientifically invalid compositions are removed manually using programming constructs such as

loops and CASE statements, while in our IMF these compatibility constraints, once registered, are

automatically enforced by the framework.

The FUSE code is written in FORTRAN. The code is written in a modularized fashion, and data structures

are defined to make the addition of more sub-models relatively straightforward and facilitate

communication between sub-models. User input files determine the model decisions. FORTRAN CASE

statements are used to establish which equations are to be evaluated in the subroutines that calculate

model fluxes and related quantities, given the user’s model building decisions. Since the solution of the

resulting nonlinear ordinary differential equations is not a trivial task, a large portion of the FUSE code is

dedicated to the mathematics required to solve the water balance equations for the state variables. The

FUSE code also is set up to allow either the user to input values of the model parameters or to have the

code estimate the model parameters internally, based on matching simulated and observed stream

discharges.

We build on FUSE in the present paper to show how those components could be assembled into

integrated workflows of components , or model compositions, using a more flexible and powerful

declarative approach that manages both syntactic and semantic heterogeneity. The next section

describes the MARIO project, which forms the basis of our integrated system.

MARIO: A New Approach to Model Integration

MARIO [8], developed at IBM Research, is an experimental software tool implementing goal-driven,

automated assembly of cross-platform [9], flow-based applications (see Figure 4). A flow-based

application is an assembly of software components – software modules, web services, etc. – that are

interconnected via a dataflow and assembled to perform some information processing task. MARIO’s

ability to interpret component semantic descriptions, and to assemble from them large numbers of

flow-based applications, positions it well as a foundational element of an IMF.

To assemble the individual components into an interconnected application, MARIO requires two things:

1) semantic descriptions of the component’s inputs, outputs, and parameters, and 2) a semantic

description of the goal to be achieved by the application. Component developers provide the

component descriptions, MARIO users (e.g., hydrologists) express their processing goals, and MARIO

assembles the flows based on that information.

11/23/2011 10:55 AM 8

Components in MARIO are described using a light-weight semantic tagging approach formal enough to

support automated assembly yet simple enough to be authored by most developers.
5
 Component

developers annotate each component’s inputs and outputs with tags, using an XML representation.

Examples (Figure 7) are described in detail in the next section. The tags describe syntax and semantics of

the input or output, including the type of information received or sent, formatting of the data,

measurement units, processing or analysis applied to obtain the data, etc. Input descriptions are used to

specify assembly constraints. In a valid composition, every tag specified in the description of an input

must be present directly or indirectly in the description of the output connected to that input.

MARIO users employ many of the same tags to express processing goals. Using MARIO’s faceted

interface, shown in Figure 6, a hydrologist might browse among various facets of information, in much

the same way he might shop for shoes online, picking the tags that best describe the desired processing

outcome. He could select tags such as ObservedPrecipitation, RoutedRunoff, GraphView; MARIO then

presents a plan for satisfying that goal—a GraphView of a multi-step composition capable of producing

RoutedRunoff, calculated using ObservedPrecipitation as input. The user can examine the composition

and can either deploy it or specify additional constraints by selecting additional tags such as

MultiplicativeRainErrorCalculation until both MARIO’s interpretation of the goal and its selected

composition meet the user’s preferences.

For a given processing goal MARIO identifies combinations of components that satisfy assembly

constraints and jointly produce outputs matching goal tags, doing so by applying a special-purpose,

optimized planning algorithm. If the goal is ambiguous MARIO selects the top-ranked composition, with

ranking based on the total cost and quality of each candidate composition.

Tags in MARIO are typically organized into a “tagsonomy” (Figure 7, top) – a simple taxonomic hierarchy

of tags. In a MARIO tagsonomy, tags are related to other tags using simple “extends” links with a

specific interpretation for component assembly, open to many uses/interpretations by the component

developer.

Composition rules are defined as a combination of match rules and propagation rules. Tags are either

matched directly, as an exact tag name match, or taxonomically, whereby a tag can be matched to any

sub-tag. In a direct match, an input tagged with EffectivePrecipitation could be matched to any output

also tagged with EffectivePrecipitation. For a taxonomic match, an input tagged with

SaturationAndSurfaceRunoff could be matched to an output tagged with any model-specific

SaturationAndSurfaceRunoff, e.g., ARNO/VIC, PRMS, or TOPMODEL (see Table 1, rows 3-5). Tag

propagation, described in [8], is beyond the scope of this paper. MARIO enforces these composition and

propagation rules to ensure that all combinations of compositions are explored, that only legitimate

5
 INQ [10], a predecessor to MARIO, relied on OWL-based component descriptions to encode assembly constraints

using rich semantic graphs. Although highly expressive and precise, these descriptions could only be authored and

maintained by developers with highly specialized modeling skills. MARIO uses simpler semantic descriptions

consisting of textual tags, much like tags used in the Delicious social bookmarking service.[11]

11/23/2011 10:55 AM 9

compositions are considered, and that goals for all legitimate compositions can be expressed by the

user.

The applications composed by MARIO can be deployed across a wide variety of computational

platforms, including IBM InfoSphere Streams (Streams). Streams, a new software platform for

distributed computing based on a highly scalable stream processing programming model, [12] supports

high-performance processing of large data volumes. The Streams platform achieves scalability by

distributing stream processing across potentially large clusters of machines, with no special user coding

needed to schedule distributed processing or to establish communication interconnectivity. Using

Streams as a target environment, applications composed and deployed by MARIO can easily be scaled

across a large number of processors.

Streams is programmed using the SPADE programming language [13], a specialized language for stream

processing. The parts of a MARIO-assembled composition that are deployed to Streams are

programmed in SPADE; each MARIO SPADE component contains a fragment of SPADE code in its

binding. In this case, a flux calculation may be implemented in SPADE, or a FORTRAN module

implementing it may be called from SPADE. When MARIO assembles SPADE components the MARIO

SPADE backend builds a SPADE program from the fragments, compiles it and deploys it to the Streams

runtime, connecting it to data sources and processing the data as a distributed, parallel-processed

stream processing application. While in this paper we focus on applying MARIO to hydrology modeling,

in the Discussion section we preview our next step: using MARIO to assemble SPADE applications built

of hydrology-specific operators, and deploying these applications to the InfoSphere Streams platform

for distributed, scalable execution.

Applying MARIO to FUSE

As described above, the purpose of the models comprising FUSE is to estimate stream discharge given

observed precipitation. This is done by calculating key elements of the water cycle, or fluxes:

evaporation, surface runoff, percolation of water between soil layers, interflow, and base flow, and the

effect of these fluxes on the change of the state of water in the soil. FUSE incorporates a variety of flux

calculations from the four parent models, which are based on different soil architectures (Figure 3) and

a variety of different assumptions that affect calculations of key concepts like surface runoff,

evaporation and percolation (Table 1). To avoid producing Frankenmodels, our IMF must address three

major challenges. First, given a definition of starting and ending states (represented as input and output

datatypes), the framework must generate chain(s) or composition(s) of model components that accept

the desired input data and produce the desired output data. Secondly, these chains must allow all

compositions of components that are scientifically valid. And thirdly, the IMF must disallow

compositions that are scientifically invalid, i.e., compositions that combine model components whose

assumptions about, e.g., upper and lower soil layer architectures, conflict. In the following sections we

describe how we defined MARIO-ready composable components based on FUSE, and how we took

advantage of MARIO’s metadata capabilities to represent necessary constraints among FUSE

components.

11/23/2011 10:55 AM 10

Defining composable components from FUSE

As shown in Table 1, the FUSE engine consists of several FORTRAN modules, each of which is responsible

for performing a particular flux calculation. Within each module, FORTRAN CASE statements select

among the various model configuration options (upper/lower soil architecture, soil evaporation scheme,

percolation scheme, etc.), applying the formula appropriate to the configured model. For example,

there are three options for the flux calculation for saturation and surface runoff, performing

computations similar to those performed under the ARNO/VIC, PRMS, and TOPMODEL models,

respectively. As Table 1, rows 3-5 indicate, they all take effective precipitation as input and emit an

estimation of saturated area and surface runoff as outputs, but the differences among their assumed

soil architectures require different state variable inputs representing water storage in the upper soil

layer.

In MARIO each of the FUSE sub-modules is treated as a separate, composable component, each

performing a single, model-specific flux computation. In transforming FUSE sub-modules to MARIO

components, each numbered row of Table 1 corresponds to a component in MARIO, each of the Inputs

to a component input, and each of the Outputs to an output.

Figure 5 contains a high-level view of the flow of data at execution among these components. The

MARIO FUSE components are depicted as stacks of components, each representing the variant used for

a specific model configuration option as described in Table 1, second column. When a user conveys a

model configuration to MARIO, MARIO assembles at most one component from each stack, linking

outputs of some to inputs of others. Thus, each configured model consists only of the formulae needed

for that model, eliminating the need for runtime decision logic.

As mentioned above, FUSE’s core flux calculations are controlled by collections of many FORTRAN CASE

statements and FOR loops. When a new soil architecture, flux computation, or other modeling

characteristic is added, changes must be made throughout the FORTRAN code, increasing code

complexity and the likelihood of incorrect operation. Converting these modules to composable

components and relying on MARIO’s rigorous application of composition rules, all possible model

compositions are explored, guided by simple expressions of flux dependencies, preventing the creation

of Frankenmodels.

Semantic Tagging of FUSE components

To enable automated model composition, each component is annotated with tags, light-weight

semantic descriptions of the component’s inputs, outputs, and configuration parameters, as shown in

Figure 7 and described in an earlier section (MARIO: A New Approach to Model Integration).

Figure 7 (top) includes a fragment of this application’s tagsonomy, beginning at the top with tags

corresponding to the 9 top-level model configuration options (e.g., RainfallMeasurementFrequency).

The descendant tags extending UpperLayerSoilArchitecture represent the various upper layer

architecture choices shown in Figure 3; for example, the

UpperLayerDividedIntoTensionStorageAndFreeStorage tag reflects the Sacramento architecture, while

UpperLayerUndivided a reflects an architecture shared by TOPMODEL and ARNO/VIC.

11/23/2011 10:55 AM 11

Component descriptions are expressed in XML. For example, the following fragment describes the

MiscellaneousFluxes_TensionReservoirWithTwoParallelTanks component (Figure 7):

<component name="MiscellaneousFluxes_TensionReservoirWithTwoParallelTanks">

 <in name="Input1" tags=" PercolationFromUpperToLowerSoilLayers "/>

 <in name="Input2" tags=" LowerLayerArchSelected TensionReservoirWithTwoParallelTanks"/>

 <in name="Input3" tags="UpperLayerArchSelected UpperLayerNotSubdivided"/>

 <out name="Output1" tags="OverflowFromLowerLayer"/>

 <out name="Output2" tags=" OverflowFromTensionStorageToFreeStorage_LowerLayer"/>

 <out name="Output3" tags="OverflowFromPrimaryLinearReservoir"/>

 <out name="Output4" tags="OverflowFromSecondaryLinearReservoir"/>

 <binding type="spade">…</binding>

</component>

As indicated in Table 1, row 28, this component computes overflow among various compartments

related to the lower soil layer. Here, the input constraint captured as Input1 is tagging the input with

PercolationFromUpperToLowerSoilLayers. As indicated in Figure 7 by the gray dotted line, this

constraint can be satisfied by matching Input1 above to the output of the Percolation… component, also

tagged with PercolationFromUpperToLowerSoilLayers. This component’s relevance is limited to

assemblies where specific lower and upper layer architectures have been selected. These constraints are

described in definitions Input2 and Input3 above, which express 1) that the respective architecture has

been selected (LowerLayerArchSelected and UpperLayerArchSelected,), and 2) that it matches the

specified value (TensionReservoirWithTwoParallelTanks and UpperLayerNotSubdivided), ie the

Sacramento soil architecture (Figure 3 c).

Enforcing Semantic Constraints

MARIO’s tagging and composition rules are the mechanism by which Frankenmodels are prohibited and

correctly formed models are constructed. In this section we show how MARIO enables our IMF to meet

the three aforementioned challenges: 1) generate compositions of model components that accept the

desired input data and produce the desired output data; 2) allow all scientifically valid compositions of

components; and 3) disallow all scientifically invalid compositions. MARIO uses a combination of match

rules and propagation rules to represent semantic constraints. By this means, we whittle down the

>250K possible combinations of component choices in Table 1 to the 316 valid compositions.

For example, suppose a user chooses the PRMS soil architecture (see Figure 3 b), which models the

upper soil layer as a free storage tank plus two tension storage tanks (recharge and excess). As Table 1

indicates, this architecture selection limits choices in the following components:

• Evaporation from Upper Soil Layer (row 6 or 7 only)

• Evaporation from Lower Soil Layer (row 12 only)

• Miscellaneous fluxes (row 24 only)

• Solve State equations (row 31 only)

11/23/2011 10:55 AM 12

MARIO ensures that these components and only these components are selected, given the architecture

choice, by associating the tag UpperLayerSubdivided and its children exclusively to them.

Not evident in Table 1 is a more subtle constraint, represented in FUSE by a FORTRAN if-statement: “do

not allow percolation below field capacity if the upper soil layer has multiple tension storage tanks”,

namely, the excess and recharge zones. Therefore the choice of PRMS upper soil architecture limits the

choice of percolation components to choices 2 and 3. As introduced earlier, parent tags were used in

MARIO to express this constraint. For this case, UpperLayerUndivided, a specific type of

UpperLayerSoilArchitecture, was classified as being an UpperLayerArchitectureSingleTank. All other

upper layer architectures were classified as UpperLayerArchitectureMultipleTanks. To enforce the

above constraint on percolation, we explicitly restricted the Percolation_WiltPointToSat component to

be assembled only when the upper layer architecture is one of the children of

UpperLayerArchitectureSingleTank. Note that UpperLayerUndivided is currently the only upper layer

architecture defined as UpperLayerArchitectureSingleTank; if a new kind of upper architecture were to

be introduced and classified as a single tank architecture, it would automatically be allowed in the

assembly with Percolation_WiltPointToSat, with all other combinations still being excluded. This occurs

without any additional procedural programming, and without recompilation and/or reinstallation of

MARIO.

Results

The culmination of our current work is an interface whereby hydrologist users can interact with MARIO,

select among model composition options, examine the resultant assembled flows, refine goals, etc., and

where component developers can insert additional components for immediate inclusion in subsequent

user requests. When our work is complete (with component descriptions bound to real, running code in

FORTRAN, SPADE , C++, etc.), those users could, at any time, submit any assembled flow for deployment

and operation and can view result data via a variety of data visualizers.

As currently configured, users can interact with MARIO to do two main things: 1) guide MARIO to

construct any of a large number of scientifically valid model compositions by selecting among the FUSE

model configuration options, and 2) browse and select combinations of the many available flux and

state computations and apply these “sub-models” to precipitation data for visualization and exploration.

Since MARIO applies its composition rules to the component semantic descriptions, any selectable

combination of tags – complete water models or finer grained flux calculation sub-models – is a valid

and deployable composition, assuming that the developer has correctly crafted both the component

descriptions and the associated computation code.

A hydrologist’s first view of MARIO for FUSE can be seen in Figure 6a. Here, the user can 1) have MARIO

construct total water analysis models (under the Simulations tab) or 2) select among the various fluxes

and calculations (under the Exploration tab).

Model configuration options for Simulations, reflected in Figure 6b, are grouped into facets,

corresponding to the Calculation column of Table 1. Figure 6a (right) shows the top-ranked composition

11/23/2011 10:55 AM 13

graph produced when two configuration options have been selected (UpperLayerUndivided for the

Upper Soil Layer Architecture and PercolationFromFieldCapacityToSaturationArea for the Percolation

Water Availability facet). Note that MARIO has automatically assembled a complete, ready-to-deploy

simulation, selecting options for each as-yet unspecified category.
6
 The user can deploy this simulation

or can continue to refine the goal.

Figure 6c shows the fully elaborated, user-selected goal consisting of one option from each category

(left), and the corresponding flow composition assembled for that goal (right). The flow diagram has

been annotated to describe each computational component. The description of each has been

abbreviated. It is possible to identify which of the 39 flux computation components has been selected by

its name, in combination with the model decisions, which are represented in the paired blue and red

components. For example, the component for calculation of Saturation and Surface Runoff would be

component 3 (Table 1), because the selected method is

ARNO_X_VICStyle_SatAreaSurfaceRunoffCalculation.

As mentioned above, the initial set of model elements and computational components can be extended.

As component developers identify new soil architectures and/or new ways to calculate fluxes, they

register these new elements with MARIO; hydrologists can employ the new options and components

immediately. Other analytic toolkits can be incorporated, including those available with InfoSphere

Streams, to apply, e.g., comparative analytics to collections of models. Also, additional data sources can

be added, such as web-accessible datasets and even live streaming water sensors. Given a scalable

model runtime environment such as InfoSphere Streams, many analyses across multiple, high volume

data sources provide an environment for high performance water data analysis and exploration.

Discussion

In this paper we have shown how the semantic tagging and model composition engine of the MARIO

project enable us to meet three critical challenges of an IMF: 1) generating valid chain(s) or

compositions of model components, given a definition of starting and ending states ; 2) allowing all

scientifically valid compositions of components; and 3) disallowing compositions that are scientifically

invalid, i.e., that combine model components whose basic assumptions about quantities like soil

architectures or evaporation schemes conflict. The advantages of this system when compared to other

model framework systems mentioned in the Motivation section are many. A declarative approach to

constraint specification frees users from the error-prone and tedious practice of manually programming

constraints in FORTRAN via nested loops and CASE statements. The tagsonomy allows the expression

and enforcement of constraints that are higher level than simple type-checking of inputs and outputs of

model components. Since constraint specification is declarative, it is relatively easy to extend the

system with new components written (or wrappered) to the MARIO/SPADE interface specification—

whether components that compute the same fluxes in a new way, or components that compute new

6
 The complete graph was generated to satisfy _FullModelResultSet, and implicit goal element for Simulations.

This tag represents the generation of all result data output by each FUSE simulation.

11/23/2011 10:55 AM 14

fluxes. MARIO’s flow generation and automatic composition enable multiple different compositions of a

set of components to be generated and run---invaluable in a multi-model, ensemble-based modeling

approach. Unlike the case of models written as monolithic FORTRAN programs, MARIO’s handling

computation at the component level allows the investigation of intermediate results at any stage along

the model composition flow.

There is nonetheless further work to be done before we can demonstrate a fully functional IMF. In this

paper we focused on componentization of models, and the representation and management of

metadata expressing their semantics. An obvious next step is to associate these conceptual components

to executable code, either in FORTRAN for complex computations such as the solution of the differential

state equations, or in the SPADE language for the relatively simple algebraic expressions used in many of

the FUSE flux calculations. The components will then be candidates for parallel execution in InfoSphere

Streams, which could dramatically increase performance, especially in multi-model, ensemble-based

methods, or when exploring large parameter spaces in autocalibration/parameter estimation. The

stream-based data model of InfoSphere Streams will also facilitate connecting the system to real-time or

near-real-time streaming sensor data, such as precipitation data.

Incorporating visualization tools will allow the rich and complex data sets that are produced in the

stream discharge simulator to be effectively conveyed and will enable non-expert users to make full use

of the relevant features of the framework. The MARIO interface will make this task particularly easy,

since 1) the results of any calculation would be available for presentation to the user, and 2) the user

need only select the tags corresponding to the desired data to see the data.

In our further work with this system, we plan to carry out several explorations of extensibility, for

example:

• componentizing and incorporating another monolithic model, e.g., the USGS’s Hydrological

Simulation Program—FORTRAN (HSPF) [14]

• integrating simulations of stream discharges from multiple watersheds to determine stream

discharges in a river network

• include more hydrologic processes in the stream discharge simulators such as infiltration-

excess runoff and processes representing role of vegetation in the hydrologic cycle, such as

the effect of vegetation canopy on the magnitude and rate of precipitation delivered to the

soil surface

• integrating an explicit groundwater model to simulate coupled surface-groundwater systems,

to allow users to simultaneously manage surface and groundwater resources

Conclusion

In this paper we have broken new ground in the development of the Integrated Modeling Framework

that is needed in many disciplines and domains related to the Intelligent Infrastructure. We have

described a research prototype that supports: registering model components in a specific domain;

expressing the semantics of the model components in a standardized set of metadata; expressing and

enforcing rich, domain-specific semantic constraints on how model components may be validly

11/23/2011 10:55 AM 15

composed together and assembled to form larger simulations; and generating valid component

assemblies, and excluding assemblies which violate the expressed domain-specific semantic constraints,

thus avoiding Frankenmodels, model assemblies that execute but are scientifically invalid. We have

demonstrated this work using the complex, real-world example of the calculation of stream discharge

from observed precipitation, building on the foundation of real-world FORTRAN modules. The use of

this example has challenged and stretched IBM’s MARIO research technology, and in the process

demonstrated its great utility. Once model developers have registered the model components and

their semantics with MARIO, component assemblies may be built by non-expert modelers with the

assurance that the model semantics will not be violated, and therefore only scientifically valid

assemblies will be generated and run. While we have focused on a single complex but fairly narrow

application domain (stream discharge in hydrology), we fully expect that our approach will be readily

applicable to a wide variety of related domains (e.g., water quality, carbon balance, crop production,

and biodiversity), and to other domains that are critical for intelligent water management, e.g.,

demographics, financials, weather, geographic information systems, and real-time streaming data from

such devices as water meters, water quality sensors, and fault-detection devices in smart levees. From

here it is not unreasonable to imagine applications to cities, transportation, utilities, and other key areas

making up our vision of the Intelligent Infrastructure.

References

See end of paper after tables and figures.

Acknowledgments

The authors extend warm thanks to Martyn Clark of the National Institute of Water and Atmospheric

Research (NIWA) in Christchurch, New Zealand, for generously allowing us to build upon his FUSE code

and answering our questions about it. We thank Steve De Gennaro, Ron Ambrosio, and Jeff Katz of IBM

for discussions of solution architectures for the Smarter Planet initiative. We also thank Anand

Ranganathan and others who worked on MARIO at IBM: Eric Bouillet, Hanhua Feng, Zhen Liu and

Octavian Udrea. This work would not be possible without them. Finally, we thank Peter Williams of

IBM’s Big Green Innovations group, for his helpful suggestions and for introducing Alex Mayer to the rest

of the co-authors (a match made in a place very near to heaven).

11/23/2011 10:55 AM 16

Table 1. Description of flux and state calculations in FUSE, represented as individual model components in

MARIO. Inputs and outputs that are the same for all options are listed on the row which specifies the

calculation. Inputs and comments that differ by option are listed on the row which specifies the option.

Calculation Model options Inputs Outputs Comments

Rainfall Error Observed precipitation Effective precipitation

1 Additive error correction No additional

inputs

2 Multiplicative error correction No additional

inputs

 Saturation and

Surface Runoff

 Effective precipitation Saturated area

Surface runoff

3 ARNO Xhang VIC Upper level water

4 PRMS Variant Upper level tension store

5 TOPMODEL Parameterization Lower level water

Evaporation

from Upper Soil

Layer

 Potential

evapotranspiration

Total Evaporation,

plus evaporation

from from 2 separate

upper layer soil

compartments

If upper soil

architecture

doesn’t support

multiple

compartments,

values set to 0

6 Tension storage sub-divided into recharge and

excess; sequential evaporation scheme

Tension storage in

recharge and excess tanks

7 Tension storage sub-divided into recharge and

excess; rootweight evaporation scheme

Tension storage in

recharge and excess tanks

8 Single tension store + free store or one state;

sequential evaporation

Tension storage

9 Single tension store + free store or one state;

rootweight evaporation

Tension storage

Evaporation

from Lower Soil

Layer

 Potential

evapotranspiration

Evaporation from the

lower soil layer

10 Lower layer architecture is either fixed size or

a tension reservoir plus two parallel tanks;

Upper layer architecture is either single

tension store+ free store or one state;

sequential lower-layer evaporation scheme

Tension storage in lower

soil layer

11 Lower layer architecture is either fixed size or

a tension reservoir plus two parallel tanks;

Upper layer architecture is either single

tension store + free store or one state;

rootweight lower-layer evaporation scheme

Tension storage in lower

soil layer

12 Lower layer architecture is either fixed size or

a tension reservoir plus two parallel tanks;

Upper layer tension storage is sub-divided

into recharge and excess;

 Evaporation

from the lower

layer is 0 by

definition

13 Lower layer architecture is either baseflow

reservoir of unlimited size (0-HUGE) with a

fractional rate, or baseflow reservoir of

unlimited size (0-HUGE) with a power

recession, or TOPMODEL exponential

reservoir (-HUGE to HUGE)

 Evaporation

from the lower

layer is 0 by

definition

Interflow Interflow from free

water in upper layer

14 Some interflow Free water in upper layer

15 No interflow Interflow = 0 by

definition

Percolation from

upper to lower

soil layers

 Percolation from

upper to lower soil

layers

16 water from (field capacity to saturation) avail

for percolation

Free water in upper layer

17 water from (wilt point to saturation) avail for Total water in upper layer

11/23/2011 10:55 AM 17

percolation

18 percolation defined by moisture content in

lower layer (SAC)

Total water in lower layer

Baseflow from

the lower soil

layer

 Total baseflow from

the lower soil layer,

plus baseflow from

multiple tanks if

applicable

19 tension reservoir plus two parallel tanks Free water in the two

tanks

20 baseflow reservoir of unlimited size (0-HUGE),

frac rate

Total water in the lower

soil layer

21 baseflow reservoir of unlimited size (0-HUGE),

power recession

Total water in the lower

soil layer

22 TOPMODEL exponential reservoir (-HUGE to

HUGE)

Total water in the lower

soil layer

23 baseflow reservoir of fixed size Total water in the lower

soil layer

Miscellaneous

fluxes

Related to upper layer Effective precipitation;

Surface runoff

Flow from recharge to

excess;

Flow from tension

storage to free

storage;

Bucket overflow;

24 upper architecture tension storage sub-

divided into recharge and excess

Storage in the recharge

zone;

Storage in the lower zone;

Free storage in upper layer

25 upper layer broken up into tension and free

storage

Tension storage in the

upper layer;

Free storage in the upper

layer

26 upper layer defined by a single state variable Total water storage in

upper layer

27 Related to Lower Layer Percolation from upper to

lower soil layers

Flow from tension

storage to free

storage;

Bucket overflow from

relevant storage zones

28 lower layer architecture is tension reservoir

plus two parallel tanks

Tension storage in lower

layer;

Storage in the primary

lower layer reservoir;

Storage in the secondary

lower layer reservoir

29 lower layer reservoir is fixed size Total storage in lower layer

 30 lower layer reservoir is unlimited size Outputs are 0

by definition

Solve State

Equations

 Related to Upper Layer Changes in total water

storage and tension

and free storage in

upper soil layer

31 Upper soil layer tension storage sub-divided

into recharge and excess

Effective precipitation;

Surface runoff;

Percolation from the upper

to lower layer;

Various upper layer fluxes:

evaporation from soil

excess zone;

Flow from recharge to

excess;

evaporation from soil

recharge zone;

11/23/2011 10:55 AM 18

flow from tension storage

to free storage;

Interflow from free water;

Bucket overflow

32 upper layer broken up into tension and free

storage

Effective precipitation;

Surface runoff;

Percolation from the upper

to lower layer;

Upper layer fluxes:

Evaporation;

Flow from tension storage

to free storage;

Interflow from free water;

Bucket overflow

33 upper layer defined by a single state variable

Effective precipitation;

Surface runoff;

Percolation from the upper

to lower layer;

Upper layer fluxes:

Evaporation;

Interflow from free water;

Bucket overflow

34 Related to Lower Layer Changes in total water

storage and tension

and free storage in

lower soil layer

35 lower layer tension reservoir plus two parallel

tanks

Percolation from the upper

to lower layer;

Lower layer fluxes:

Evaporation;

Flow from tension storage

to free storage;

Baseflow from primary

linear reservoir;

Baseflow from secondary

linear reservoir;

Bucket overflow from

primary and secondary

linear reservoirs

36 single state for lower layer

Percolation from the upper

to lower layer;

Lower layer fluxes:

Evaporation;

Baseflow;

Bucket overflow

Update State

37 Changes in total water

storage and tension and

free storage in upper and

lower soil layers

Total water storage

and tension and free

storage in upper and

lower soil layers for

new timestep

Overland

Routing

 Surface runoff; Upper

layer bucket overflow;

Interflow from free water;

Lower layer bucket

overflow;

Baseflow

instantaneous runoff;

Routed runoff

38 use a Gamma distribution with shape

parameter = 2.5

39 no routing Routed runoff is

0 by definition

11/23/2011 10:55 AM 19

Figure 1. Intelligent Infrastructure Reference Architecture. The Service-Oriented Architectural foundation of the Intelligent

Infrastructure, integrating (near-) real-time sensor data, analytics, and controls with enterprise data, applications, analytics,

modeling/simulation, and user interfaces/visualization. The orange box in the upper right highlights the portion of the

architecture that this paper addresses.

Key to abbreviations: ETL= Extract, Transform, Load data warehousing services. GIS = Geographic Information Systems.

SCADA=Supervisory Control and Data Acquisition. MES=Manufacturing Execution System. ERP=Enterprise Resource

Planning.

E
S

B
User

Interfaces

Analytics Device Control/

Monitoring

Related data

ETL service

Simulation Manager

Model Component

Manager

Visualization

Data Transformation

Rules Manager

Business

Applications

Data Historian

Demographics

GIS

Environment

Weather

Local Connections (Ethernet, SCADA, Internal Buses)

Operational

Logic

Cameras,

webcams

Intelligent

sensors

Process/Workflow

Choreography

Device controllers

(pumps, switches…)

Time-Dependent Middleware

MES,

Process

Control

Meters

Enterprise Service Bus (ESB)

High-performance Analytics

Computation Engine

Network device

monitoring and control

(eg SCADA)

Event

Detection
Local

Analytics
Operational

Monitoring

Complex

Event Processing

Modeling

In situ

sensors
Remote

sensors

�Analytics Engine

�Geo-spatial Data

Mining

�Statistics

�Risk Assessment

�SCADA

�MES

�ERP

�Asset

Management

�Scheduling/

Forecasting

�Inputs

�Outputs

�Administration

Collaboration

�Reporting

�Dashboard

�Email/pager

Data

Warehouse

�Analytics Rule

Base

�Rules Engine

�Alerts

�Access Mgrs

�Remote config

and management

�Complex event

processing

High-performance archiving

of time-series data

 MARIO

11/23/2011 10:55 AM 20

wind

groundwater

storage

precipitation

tr
a

n
sp

ir
a

ti
o

n

e
v

a
p

o
ra

ti
o

n

e
v

a
p

o
ra

ti
o

n

interception

storage

snow

runoff

in
fi

lt
ra

ti
o

n

re
ch

a
rg

e

re
fl

e
ct

e
d

 a
n

d

lo
n

g
w

a
v

e
 r

a
d

ia
ti

o
n

re
fl

e
ct

e
d

 a
n

d

lo
n

g
w

a
v

e
 r

a
d

ia
ti

o
n

shortwave

radiation

baseflow

soil moisture

storage

Figure 2. Illustration of hydrologic cycle, including water storage compartments and pathways for water

movement in the atmosphere and over and through the land surface (fluxes). Components of energy fluxes that

drive the hydrologic cycle also are depicted.

11/23/2011 10:55 AM 21

upper soil

zone evapotranspiration

lower soil

zone

q
sx

, q
if
 1

Sd

dt

Δ storage

runoff

q
b

e1

precipitation

p

e2
q

12

2
Sd

dt

(a) GENERIC

(b) PRMS (c) SACRAMENTO

(d) TOPMODEL
(e) ARNO/VIC

Figure 3. Schematic representations of two-zone systems: (a) generic system with terms for changes in water storage for each zone

and corresponding water fluxes; (b) – (e) parent model modular systems, indicating differences among models in terms of fluxes

and sub-divisions of zone storages and fluxes. S is storage in each soil zone; e is evapotranspiration from each soil zone; p is

precipitation; q12 is percolation; qsx is saturation-excess runoff; qif is interflow (lateral flux through the upper layer to the stream); qb

is baseflow (lateral fluxes through the lower layer to the stream); Zuz and Zlz are depths of the upper and lower soil layers,

respectively; θwlt, θfld, and θsat are soil moistures at wilting point, field capacity, and saturation, respectively; indices 1 and 2 denote

the upper and lower soil zones, respectively; indices T and F denote stored water held in tension (retained by capillary forces) and

freely-flowing water in storage; and indices A and B denote further sub-divisions of soil zones.

11/23/2011 10:55 AM 22

Figure 4. The MARIO cross-platform architecture with example data sources and processing components from

the financial domain.

11/23/2011 10:55 AM 23

RAINFALL

ERROR

RAINFALL

ERROR

SATURATION &

SURFACE Runoff

OVERLAND

ROUTING

UPDATE

STATE

UPDATE

STATE

UPDATE

STATE

UPDATE

STATESOLVE

STATE EQUATIONS

SOLVE

STATE EQUATIONS

SOLVE

STATE EQUATIONS

SOLVE

STATE EQUATIONS

PERCOLATION
PERCOLATION

MISCELLANEOUS

FLUXES

MISCELLANEOUS

FLUXES

MISCELLANEOUS

FLUXES

MISCELLANEOUS

FLUXES

MISCELLANEOUS

FLUXES

UPPER LAYER

EVAPORATION

UPPER LAYER

EVAPORATION

UPPER LAYER

EVAPORATION

LOWER Layer
EVAPORATION

LOWER Layer

EVAPORATION

LOWER Layer

EVAPORATION

INTERFLOW

BASE FLOW
BASE FLOWBASE FLOW

SATURATION &

SURFACERunoff

PERCOLATION

INTERFLOW

SOLVE

STATE EQUATIONS

LOWER LAYER

EVAPORATION

UPPER LAYER

EVAPORATION

Misc
fluxes

UPDATE

STATE

Note: in addition to dependencies shown, most flux calculations are dependent on values of state variables at the previous timestep

Instantaneous
Runoff

Routed Runoff

Total Water:
Upper Layer,
Lower Layer

OUTPUT

Legend: Flux computations

State computations

Inputs and outputs

SATURATION &

SURFACE RUNOFF

Upper
Layer

Evaporation

Lower
Layer

Evaporation

Effective
Precipitation

BASE FLOW
BASE FLOW

OVERLAND

ROUTING

Interflow

Baseflow

Saturated

AreaSurface
Runoff

Observed
Precipitation

Potential
Evapo-

Transpiration

Percolation

MISCELLANEOUS

FLUXES

Percolation

INPUT

Figure 5. Model Component Flow diagram. Text in black labeling arcs connecting two components indicates

inputs and outputs of model components. Stacks of green boxes represent options for flux calculations and stacks

of orange boxes indicate options for calculating state variables. Ellipses indicate inputs and outputs to the model

composition as a whole.

11/23/2011 10:55 AM 24

Figure 6. Screen shots of 6a: the MARIO web UI, 6b: a view showing all Model Configuration facets

and all selectable option tags in each facet, and 6c: a completely specified FUSE component assembly,

with a tag selected for each model composition option, and the corresponding processing graph, with

components annotated. The blue and red paired boxes depict exclusive choice constraints: the red

11/23/2011 10:55 AM 25

box is a singleton selector, allowing exactly one value of the respective model configuration option.

Without such a constraint, any component calling for, e.g., and upper layer architecture choice could

be satisfied by any of the upper layer architecture options.

11/23/2011 10:55 AM 26

Figure 7. Four components, their tag-described inputs, outputs, and parameters, and an associated

fragment of the FUSE tagsonomy (top). Here, black components are computational components, red is

a special selector component, indicating a unique choice, and periwinkle component is a composition

parameter, in this case representing the constant UpperLayerUndivided.

11/23/2011 10:55 AM 27

References

 [1] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and P. Williams,

"Foundations for Smart Cities," IBM Journal of Research & Development, Special Issue on

Supporting a 'Smarter Planet' with Technology, (2010).

 [2] B. Eckman, C. Barford, P. West, and G. Raber, "Intuitive simulation, querying, and visualization for

river basin policy & management," IBM Journal of Research & Development, Special Issue on

Technologies for Environmental Stewardship, (2009).

 [3] M. Kehoe, E. Alvey, H. Badawi, B. Brech, S. DeGennaro, R. DeMaine, P. Hartswick, A. Heys, J. Hogan,

J. Katz, and D. Waxman, "Smart Cities Solution Architectures: A RedGuide for Business Leaders,"

2009.

 [4] M. Clark, A. Slater, D. Rupp, R. Woods, J. Vrugt, H. Gupta, T. Wagener, and L. Hay, "Framework for

Understanding Structural Errors (FUSE): A modular framework to diagnose differences between

hydrological models," Water Resources Research, vol. 44, p. W00B02 (2008).

 [5] G Leavesley, P Restrepo, S Markstrom, M Dixon, and L Stannard, The Modular Modeling System

(MMS): User's Manual, U.S. Geological Survey, Denver, CO,1996.

 [6] J Gregersen, P Gijsbers, and S Westen, "OpenMI : Open Modelling Interface," Journal of

Hydroinformatics, pp. 175-191 (2007).

 [7] Consortium of Universities for the Advancement of Hydrologic Science Inc, "Community Hydrologic

Modeling Platform (CHyMP)," 2009. http://www.cuahsi.org/chymp.html

 [8] A. V. Riabov, E. Bouillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan, "Wishful Search: Interactive

Composition of Data Mashups," World Wide Web Conference (WWW-08), Beijing, China, Apr 21-

25, 2008., (2008).

 [9] E. Bouillet, M. D. Feblowitz, H. Feng, Z. Liu, A. Ranganathan, A. V. Riabov, and O. Udrea, "MARIO:

Middleware for Assembly and Deployment of Complex Multi-platform Applications,"

ACM/IFIP/USENIX 10th International Middleware Conference, Urbana Champaign, Illinois, USA,

November 30 - December 4, 2009, (2009).

 [10] E. Bouillet, M. D. Feblowitz, Z. Liu, A. Ranganathan, and A. V. Riabov, "Semantic Matching,

Propagation and Transformation for Composition in Component-Based Systems," International

Journal of Software Science and Computational Intelligence (IJSSCI), vol. 1, No. 1 (2009).

 [11] "Delicious," 2009. http://delicious.com

 [12] IBM, "InfoSphere Streams," 2009. http://www.ibm.com/software/data/infosphere/streams/

 [13] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, "SPADE: The System S Declarative Stream

Processing Engine. " International Conference on Management of Data, ACM SIGMOD, (2008).

11/23/2011 10:55 AM 28

 [14] B. Bicknell, J. Imhoff, J. Kittle, Jr. A. Donigian, and R. Johanson, Hydrological Simulation Program--

Fortran, User's manual for version 11, U.S. Environmental Protection Agency, National Exposure

Research Laboratory, Athens, Ga,1997.

