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Abstract  

Building the Smarter Planet requires creating an Intelligent Infrastructure that integrates technology 

with business, government, and the everyday life of the citizens of earth, to  maximize the use of scarce 

resources, balance human use and ecosystem preservation, reduce costs, and improve quality of life. 

One of the keystones of this Intelligent Infrastructure is an Integrative Modeling Framework (IMF), a 

platform to enable the integration by non-expert users of diverse, sensor-based data, related business 

data, and complex, cross-disciplinary mathematical modeling, in support of planning, monitoring, 

management, reporting, and decision support applications.  We describe a research prototype that 

applies the Mashup Automation with Runtime Invocation & Orchestration (MARIO) technology from 

IBM Research to this problem in a specific application area in water management:  simulating stream 

discharges using compositions of hydrologic process submodels derived from monolithic stream 

discharge simulators.   We show how MARIO’s semantic tagging and model composition engine enable 

us to meet three critical challenges of an IMF:  1) generating valid chain(s) or compositions of model 

components,  given a definition of starting and ending states ; 2) allowing all scientifically valid 

compositions of components;  and 3) disallowing compositions that are scientifically invalid, i.e., that 

combine model components whose basic assumptions about quantities like soil architectures or 

evaporation schemes conflict.   While we focus here on water management , the technology that we 

describe is readily generalizable to other Intelligent Infrastructure applications, e.g., cities, 

transportation, and utilities.   

Introduction  

Building the Smarter Planet requires creating an Intelligent Infrastructure that integrates technology 

with business, government, and the everyday life of the citizens of earth, to maximize the use of scarce 

resources, balance human use and ecosystem preservation, reduce costs, and improve quality of life. 

Bringing intelligence to these interactions requires an unprecedented degree of integration of 

heterogeneous data, analytics and simulations.  One of the keystones of this Intelligent Infrastructure is 

therefore an Integrative Modeling Framework (IMF), an infrastructure platform to enable the 

integration by non-expert users of diverse, sensor-based data, related business data, and complex, 

cross-disciplinary mathematical modeling, in support of planning, monitoring, management, reporting, 
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and decision support applications.  For example, critical to the technology foundation for the 

development and operation of Smart Cities is the integration of a wide variety and volume of data and 

the application of a correspondingly wide variety of analytics and simulations to interpret this data, 

make predictions based on it, and optimize business processes that act on it.[1]  In the domain of water 

management, policy makers and other stakeholders need to assess, come to consensus, and act on land-

use decisions that balance human use and ecosystem preservation/restoration.  These decisions require 

input from models from a wide variety of environmental sectors, including water balance, water quality, 

carbon balance, crop production, and proxies for biodiversity.[2]   But model codes are typically written 

in a monolithic fashion which does not support building large integrated models out of a set of model 

components.  Furthermore, in the relatively rare case where codes are modularized, a common 

framework is lacking which can provide a consistent interface for passing data, as well as a language in 

which to express rules about which components may validly be integrated.  

A number of approaches have been developed for integration of data sources and/or services, such as 

Service-Oriented Architecture (SOA), Enterprise Service Bus (ESB), Service Component Architecture 

(SCA) and Extract, Transform, Load (ETL). All of these technologies are relevant to an integrative 

modeling framework and address important needs, providing execution environments, connectivity, 

service catalogs, interface contracts, and data transformation. In this paper we present a new approach 

to describing components that makes it possible to exclude invalid compositions of model components 

based not just on interface contracts but also on semantic constraints. As illustrated in Figure 1, our 

approach complements these technologies and can be best applied in combination with all or some of 

them. 

In this work, we describe a research prototype that applies IBM research technology to the problem of 

model integration in a specific application area: simulating stream discharges. We choose this 

application area because we have a deep understanding of the needs and issues involved in stream 

discharge simulation, and therefore the research technology applied to it will be challenged and 

stretched by its requirements.  Nevertheless , the technology that we describe is readily generalizable to 

other Intelligent Infrastructure applications, e.g., cities, transportation, and utilities.   

The reference software architecture we propose for an Intelligent Infrastructure is shown in Figure 1, a 

variation on that of [3].  A Service-Oriented Architecture, it integrates (near-) real-time sensor data, 

analytics, and controls with enterprise data, applications, analytics, modeling/simulation, and user 

interfaces/visualization.  It comprises three Enterprise Service Buses, specialized for (from bottom to 

top): 1)  Sensor Level: Event/Data Capture, Analytics, Pattern Recognition, Control; 2) Operational Level: 

Business Processes, Workflow, Modeling, Contingencies and Analytics; and 3) Enterprise Level: 

Visualization, Simulation, Process Optimization, Planning, Deep Insight.   An orange box in the upper 

right highlights the portion of the architecture on which this paper focuses:  managing model 

components  and the metadata and rules that govern their composition into workflows or chains of 

model components that comprise simulations.   To our knowledge, this functionality is lacking in existing 

modeling frameworks but it is critical for an Intelligent Infrastructure IMF, particularly one whose target 

users are not expert modelers.   
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In the specific area of estimating streamflow, there are a variety of well-respected models, each with 

different assumptions about such concepts as soil architecture and how best to correct for error in 

estimating effective precipitation.  We are developing a flexible, extensible modeling framework to 

enable non-expert modelers to define and run multi-step analytic simulations for river basin 

management, based on the Mashup Automation with Runtime Invocation & Orchestration (MARIO) 

project from IBM Research.  In this framework, we divide monolithic models into atomic components 

with clearly defined semantics encoded via rich metadata representation.  Once models and their 

semantics and composition rules have been registered with the system by their authors or other 

experts, non-expert users may construct simulations as workflows of these atomic model components.  

A model composition engine enforces rules/constraints for composing model components into 

simulations, to avoid the creation of Frankenmodels, models that execute but produce scientifically 

invalid results.   

This paper is organized as follows.  We begin in the Motivation section by describing the basic concepts 

of hydrology and motivating the need for an IMF in that field.   Next we describe the Framework for 

Understanding Structural Errors (FUSE)[4], a system in which four parent stream discharge models have 

been componentized, allowing the components to be assembled into new models.  We view this work 

both as a case study for the need for an IMF in hydrology (Case Study: FUSE section), and as an excellent 

source of model components for our work.   Next, we summarize the underlying  MARIO technology 

(MARIO: A New Approach to Model Integration) and describe how we defined MARIO-ready 

composable components based on FUSE, taking advantage of MARIO’s metadata capabilities to 

represent necessary constraints on compositions of model components (Applying MARIO to FUSE).  Next 

we describe the results of this application (Results). The Discussion section highlights what we see as the 

primary advantages of our approach, and describes our plans for further research.  The Conclusion 

summarizes the contributions of the paper.  

Motivation 

In order to motivate the need for an IMF in the hydrology field, we must first introduce some hydrology 

basics.   

A Hydrology Primer 

Hydrology is the science that encompasses the occurrence, distribution, movement and properties of 

water and the relationship of water with environmental and human systems. The hydrologic cycle is a 

continuous process where water is evaporated and transported from the earth's surface to the 

atmosphere and back to the land and oceans. Within the hydrologic cycle, water is subjected to physical, 

chemical and biological processes as it travels various paths through the atmosphere and the earth's 

surface. Figure 2 illustrates some of the processes and storage reservoirs in the hydrologic cycle, 

including the principle that energy, via solar radiation, drives the cycling of water between the earth’s 

surface and the atmosphere.  

Current, critical issues in hydrology include determining how fresh water distribution over and through 

and on the land surface may be impacted as a result of climate change and how the cycling of water 
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influences patterns of ecosystem carbon and nutrient cycling. Given the intensive nature of human 

inter-relationships with the hydrologic cycle, hydrologists and water resources managers are concerned 

with adapting water management strategies to variations in the hydrologic cycle, induced by natural or 

anthropogenic changes in land cover and climate.  

Hydrologic modeling, which encompasses the movement and storage of water through the hydrologic 

cycle, can be a powerful tool for exploring issues of interest to hydrologists and water managers. In this 

work, we are narrowing the scope to consider models whose primary function is to simulate stream 

flows, or discharges, in response to precipitation events (e.g. rain storm or snow melt events),  although 

we believe our approach to be generally applicable, both to wider hydrologic modeling issues and to 

other Intelligent Infrastructure domains.  Stream discharge simulations are used to understand and 

make predictions concerning water supply availability, including support for water banking and 

groundwater recharge, flood events, hydroelectric power generation, and ecosystem interactions, such 

as relationships between fish survival and flow magnitude and timing. 

Approaches for modeling stream discharge vary widely in terms of how the models conceptually and 

mathematically represent the physical processes that govern the distribution and movement of water 

over and through the land surface.  The models are typically applied over a watershed or basins that can 

range in size from a few to millions of square kilometers.  Simulations are run over time scales that 

range from a matter of minutes to months to years. A typical model development exercise involves 

conceptualization of the hydrologic system, definition of the relevant model equations, writing 

computer codes, assembly of input information, and calibration of model tuning parameters against 

observed discharges. The calibrated models are used to forecast stream discharges under a variety of 

climatic or land cover conditions.  

The models usually operate by separating precipitation entering  the land surface into various fluxes, 

such as (1) water that flows on or under the land surface and eventually into a stream channel, (2) water 

that evaporates or transpires from the land surface or through vegetation into the atmosphere, and (3) 

water that percolates into the underlying groundwater. Model operation also usually involves dividing 

the physical system into a number of compartments. Water can be stored within compartments. Water 

fluxes describe the movement of water in, out, and between compartments.  

Water balance equations are written for each compartment, as in  

 = −∑ ∑in out

dS
q q

dt
 

where dS dt is the time rate of change of storage, S, of water in a compartment, qin  represents the 

fluxes of water entering  a compartment, and qout represents the fluxes leaving a compartment. The flux 

terms typically consist of empirically-derived equations that depend on state variables such as storage 

and temperature and empirical parameters. The empirical parameters are usually derived by calibrating 

the model against stream discharge observations.  Water balance equations typically must be solved 

using numerical approximations. A typical model may involve several, coupled water balance equations. 
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Figure 3 a) shows an example of a model that divides the soil between the land surface and a near-

surface groundwater aquifer into two layers, each with its own water balance equation. 

There are many sources of uncertainty involved in the development of stream discharge models, 

including errors in the conceptualization of the system. One promising approach to contending with this 

uncertainty is to use an ensemble of models to make predictions of streamflows, also known as multi-

modeling. Multi-modeling is attractive in that the ensemble mean of all model outputs combines the 

strengths of each model, generating an output that is more robust than a single model,. Combining 

model outputs could be as simple as averaging the stream discharges estimated by each model or could 

incorporate error estimates obtained during model calibration, as in   

 =∑ k kF w f  

where F is the ensemble mean stream discharge,  fk is the result of kth model, and wk is the weight of 

the kth model, related to model’s correlation with observations during calibration. 

Stream discharge codes, and indeed codes used for other aspects of water management, can be built in 

a modular fashion. Code modules can be written for each water balance equation and flux equation, 

with the appropriate data being passed between each module. If codes are written in a modular format 

and data structures are consistent, modules can be swapped in and out of the models and modules 

representing different processes can be added. For example, the system represented in Figure 3 a) does 

not include a conceptual representation of canopy interception storage (the part of precipitation that is 

captured and held by vegetation). An appropriate canopy interception module would have atmospheric 

precipitation as input and would, in principle, output precipitation onto the soil surface and into the 

upper soil water balance equation.  

Historically, stream discharge model development has occurred through different groups in academic 

institutions and government agencies, often with little communication among the groups. As a result, 

many models have been developed, each with its strength and weaknesses. In addition, codes have 

often been written in a monolithic fashion, and, in the case where codes are modularized, code 

structures for passing data are not consistent from model to model. This practice has led to several 

inefficiencies, including the need to customize input data to suit each model and to write specialized 

code to allow the models or pieces of the models to pass data among each other. 

The Need for an Integrative Modeling Framework 

To facilitate modeling in the hydrology community and the exchange of modeling ideas and best 

practices, it is necessary to provide a flexible, extensible modeling framework infrastructure for defining 

and running multi-step analytic simulations, and integrating them with real-time sensor data.  This 

approach requires the division of extant (typically monolithic) discipline-specific models into atomic 

model components.  Cross-disciplinary simulations may then be expressed as workflows specified as 

chains or compositions of components.  Unlike other existing modeling frameworks, our framework is 

intended to support non-expert modelers.  Since models can be built on different or even conflicting 

assumptions and definitions of key terms, not all compositions of components represent scientifically 

valid simulations.  It is critical not to allow formation of Frankenmodels, compositions of incompatible 
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components that produce scientifically invalid simulations.  This requires a rich metadata specification 

for representing model semantics and expressing rules/constraints for combining model components.  

Additional requirements are a software environment for modeling framework development, and an 

adapter strategy for non-Java code (e.g., FORTRAN, Python) that still enables efficient simulation runs, 

including parallelization of component execution.   

An IMF would allow for modules to be written to a published interface and then to be re-assembled to 

form completely new models, as long as the structures for passing data in and out of the models were 

consistent.  Initially this approach would involve extracting component modules from the various parent 

stream discharge codes, but we expect that soon model developers will write directly to the interface.  

This approach would potentially enhance the robustness of multi-modeling efforts.  

Several groups have attempted to develop IMFs for hydrologic modeling.  Leavesley et al.
 
[5]  developed 

the Unix-based Modular Modeling System (MMS) to support development of hydrologic process 

algorithms and the integration of user-selected sets of algorithms into operational hydrologic models. 

Designed to facilitate integration of existing modelling systems, the OpenMI project focuses on defining 

a standardized interface to pass data among models and model components.[6]  More recently, the 

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is launching an 

effort towards the development of a Community Hydrologic Modeling Platform (CHyMP).
 
[7] The 

general thrust of CHyMP is to promote a community-based effort to develop modular components of 

the hydrologic cycle that can be integrated into useful models and modeling and used in advanced 

hydrologic research.  Clark et al.
 
have developed the Framework for Understanding Structural Errors 

(FUSE)[4], which focuses primarily on multi-modeling. In this work, the authors componentized four 

parent stream discharge models and manually combined the components into new models.  The 

following section explains the FUSE methodology.  

Case Study: FUSE   

In Clark et al.’s FUSE code, individual flux equations are modularized, rather than linking existing sub-

models, as is done in the MMS effort .   In FUSE, modeling options are drawn from four parent rainfall-

runoff models (Figure 3 b-e), denoted here as the PRMS, Sacramento, TOPMODEL, and ARNO/VIC 

models (see [4] for the full name and citations for each model). The parent models include several 

processes that interact with the subsurface, such as vegetation storage, but for simplicity, only fluxes 

within the subsurface are considered. In each model, the subsurface is divided into two layers: the 

unsaturated layer, or upper soil layer (above the water table), and the saturated layer, or lower soil layer 

(below the water table). Each parent model describes the architecture of the upper and lower soil layer 

and equations for simulating fluxes: evaporation, surface runoff, percolation of water between soil 

layers, interflow, and base flow.  The layer architecture refers to the subdivision of the water storage 

into from one to three compartments. The equations for simulating fluxes for a given process vary in 

terms of the algebraic equations and the parameters and state variables needed to calculate the fluxes. 

The parent models are simplified somewhat to allow for as many processes as possible to be 

modularized and interchangeable and incorporated into new models that are re-assembled from the 
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resulting modules. We used a more recent version of the FUSE code than described in Clark et al., which 

includes several more model building choices. The model building options are given in Table 1. The 

number of possible models built by simply choosing one option for each calculation in Table 1 exceeds 

250,000.  However, the vast majority of model decisions, e.g., selection of flux equations, are tied to 

preliminary decisions such as the choice of soil layer architecture.  When model compositions are 

removed that involve incompatible model components, 316 valid models can be constructed.   Note that 

in FUSE, scientifically invalid compositions are removed manually using programming constructs such as 

loops and CASE statements, while in our IMF these compatibility constraints, once registered, are 

automatically enforced by the framework. 

The FUSE code is written in FORTRAN. The code is written in a modularized fashion, and data structures 

are defined to make the addition of more sub-models relatively straightforward and facilitate 

communication between sub-models. User input files determine the model decisions. FORTRAN CASE 

statements are used to establish which equations are to be evaluated in the subroutines that calculate 

model fluxes and related quantities, given the user’s model building decisions.  Since the solution of the 

resulting nonlinear ordinary differential equations is not a trivial task, a large portion of the FUSE code is 

dedicated to the mathematics required to solve the water balance equations for the state variables. The 

FUSE code also is set up to allow either the user to input values of the model parameters or to have the 

code estimate the model parameters internally, based on matching simulated and observed stream 

discharges.   

We build on FUSE in the present paper to show how those components could be assembled into 

integrated workflows of components , or model compositions, using a more flexible and powerful 

declarative approach that manages both syntactic and semantic heterogeneity.  The next section 

describes the MARIO project, which forms the basis of our integrated system. 

MARIO: A New Approach to Model Integration 

MARIO [8], developed at IBM Research, is an experimental software tool implementing goal-driven, 

automated assembly of cross-platform [9], flow-based applications  (see Figure 4). A flow-based 

application is an assembly of software components – software modules, web services, etc. – that are 

interconnected via a dataflow and assembled to perform some information processing task. MARIO’s 

ability to interpret component semantic descriptions, and to assemble from them large numbers of 

flow-based applications, positions it well as a foundational element of an IMF. 

To assemble the individual components into an interconnected application, MARIO requires two things: 

1) semantic descriptions of the component’s inputs, outputs, and parameters, and 2) a semantic 

description of the goal to be achieved by the application.  Component developers provide the 

component descriptions, MARIO users (e.g., hydrologists) express their processing goals, and MARIO 

assembles the flows based on that information. 
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Components in MARIO are described using a light-weight semantic tagging approach formal enough to 

support automated assembly yet simple enough to be authored by most developers.
5
 Component 

developers annotate each component’s inputs and outputs with tags, using an XML representation. 

Examples (Figure 7) are described in detail in the next section. The tags describe syntax and semantics of 

the input or output, including the type of information received or sent, formatting of the data, 

measurement units, processing or analysis applied to obtain the data, etc. Input descriptions are used to 

specify assembly constraints. In a valid composition, every tag specified in the description of an input 

must be present directly or indirectly in the description of the output connected to that input. 

MARIO users employ many of the same tags to express processing goals. Using MARIO’s faceted 

interface, shown in Figure 6, a hydrologist might browse among various facets of information, in much 

the same way he might shop for shoes online, picking the tags that best describe the desired processing 

outcome. He could select tags such as ObservedPrecipitation, RoutedRunoff, GraphView; MARIO then 

presents a plan for satisfying that goal—a GraphView  of a multi-step composition capable of producing 

RoutedRunoff, calculated using ObservedPrecipitation as input.  The user can examine the composition 

and can either deploy it or specify additional constraints by selecting additional tags such as 

MultiplicativeRainErrorCalculation until both MARIO’s interpretation of the goal and its selected 

composition meet the user’s preferences. 

For a given processing goal MARIO identifies combinations of components that satisfy assembly 

constraints and jointly produce outputs matching goal tags, doing so by applying a special-purpose, 

optimized planning algorithm. If the goal is ambiguous MARIO selects the top-ranked composition, with 

ranking based on the total cost and quality of each candidate composition.   

Tags in MARIO are typically organized into a “tagsonomy” (Figure 7, top) – a simple taxonomic hierarchy 

of tags.  In a MARIO tagsonomy, tags are related to other tags using simple “extends” links with a 

specific interpretation for component assembly, open to many uses/interpretations by the component 

developer.   

Composition rules are defined as a combination of match rules and propagation rules.  Tags are either 

matched directly, as an exact tag name match, or taxonomically, whereby a tag can be matched to any 

sub-tag. In a direct match, an input tagged with EffectivePrecipitation could be matched to any output 

also tagged with EffectivePrecipitation. For a taxonomic match, an input tagged with 

SaturationAndSurfaceRunoff could be matched to an output tagged with any model-specific  

SaturationAndSurfaceRunoff, e.g., ARNO/VIC, PRMS, or TOPMODEL (see Table 1, rows 3-5).  Tag 

propagation, described in [8], is beyond the scope of this paper.  MARIO enforces these composition and 

propagation rules to ensure that all combinations of compositions are explored, that only legitimate 

                                                             

5
 INQ [10], a predecessor to MARIO, relied on OWL-based component descriptions to encode assembly constraints 

using rich semantic graphs.  Although highly expressive and precise, these descriptions could only be authored and 

maintained by developers with highly specialized modeling skills.  MARIO uses simpler semantic descriptions 

consisting of textual tags, much like tags used in the Delicious social bookmarking service.[11] 
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compositions are considered, and that goals for all legitimate compositions can be expressed by the 

user. 

The applications composed by MARIO can be deployed across a wide variety of computational 

platforms, including IBM InfoSphere Streams (Streams). Streams, a new software platform for 

distributed computing based on a highly scalable stream processing programming model, [12] supports 

high-performance processing of large data volumes. The Streams platform achieves scalability by 

distributing stream processing across potentially large clusters of machines, with no special user coding 

needed to schedule distributed processing or to establish communication interconnectivity. Using 

Streams as a target environment, applications composed and deployed by MARIO can easily be scaled 

across a large number of processors. 

 

Streams is programmed using the SPADE programming language [13], a specialized language for stream 

processing. The parts of a MARIO-assembled composition that are deployed to Streams are 

programmed in SPADE; each MARIO SPADE component contains a fragment of SPADE code in its 

binding. In this case, a flux calculation may be implemented in SPADE, or a FORTRAN module 

implementing it may be called from SPADE.  When MARIO assembles SPADE components the MARIO 

SPADE backend builds a SPADE program from the fragments, compiles it and deploys it to the Streams 

runtime, connecting it to data sources and processing the data as a distributed, parallel-processed 

stream processing application.  While in this paper we focus on applying MARIO to hydrology modeling, 

in the Discussion section we preview our next step:  using MARIO to assemble SPADE applications built 

of hydrology-specific operators, and deploying these applications to the InfoSphere Streams platform 

for distributed, scalable execution.  

Applying MARIO to FUSE 

As described above, the purpose of the models comprising FUSE is to estimate stream discharge given 

observed precipitation.  This is done by calculating key elements of the water cycle, or fluxes: 

evaporation, surface runoff, percolation of water between soil layers, interflow, and base flow, and the 

effect of these fluxes on the change of the state of water in the soil.  FUSE incorporates a variety of flux 

calculations from the four parent models, which are based on different soil architectures (Figure 3) and 

a variety of different assumptions that affect calculations of key concepts like surface runoff, 

evaporation and percolation (Table 1).   To avoid producing Frankenmodels, our IMF must address three 

major challenges.  First, given a definition of starting and ending states (represented as input and output 

datatypes), the framework must generate chain(s) or composition(s) of model components that accept 

the desired input data and produce the desired output data.  Secondly, these chains must allow all 

compositions of components that are scientifically valid.  And thirdly, the IMF must disallow 

compositions that are scientifically invalid, i.e., compositions that combine model components whose 

assumptions about, e.g., upper and lower soil layer architectures, conflict.   In the following sections we 

describe how we defined MARIO-ready composable components based on FUSE, and how we took 

advantage of MARIO’s metadata capabilities to represent necessary constraints among FUSE 

components.   
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Defining composable components from FUSE 

As shown in Table 1, the FUSE engine consists of several FORTRAN modules, each of which is responsible 

for performing a particular flux calculation.  Within each module, FORTRAN CASE statements select 

among the various model configuration options (upper/lower soil architecture, soil evaporation scheme, 

percolation scheme, etc.), applying the formula appropriate to the configured model.   For example, 

there are three options for the flux calculation for saturation and surface runoff, performing 

computations similar to those performed under the ARNO/VIC, PRMS, and TOPMODEL models, 

respectively.   As Table 1, rows 3-5 indicate, they all take effective precipitation as input and emit an 

estimation of saturated area and surface runoff as outputs, but the differences among their assumed 

soil architectures require different state variable inputs representing water storage in the upper soil 

layer.   

In MARIO each of the FUSE sub-modules is treated as a separate, composable component, each 

performing a single, model-specific flux computation.   In transforming FUSE sub-modules to MARIO 

components, each numbered row of Table 1 corresponds to a component in MARIO, each of the Inputs 

to a component input, and each of the Outputs to an output. 

Figure 5 contains a high-level view of the flow of data at execution among these components.  The 

MARIO FUSE components are depicted as stacks of components, each representing the variant used for 

a specific model configuration option as described in Table 1, second column.  When a user conveys a 

model configuration to MARIO, MARIO assembles at most one component from each stack, linking 

outputs of some to inputs of others. Thus, each configured model consists only of the formulae needed 

for that model, eliminating the need for runtime decision logic.   

As mentioned above, FUSE’s core flux calculations are controlled by collections of many FORTRAN CASE 

statements and FOR loops. When a new soil architecture, flux computation, or other modeling 

characteristic is added, changes must be made throughout the FORTRAN code, increasing code 

complexity and the likelihood of incorrect operation. Converting these modules to composable 

components and relying on MARIO’s rigorous application of composition rules, all possible model 

compositions are explored, guided by simple expressions of flux dependencies, preventing the creation 

of Frankenmodels.   

Semantic Tagging of FUSE components 

To enable automated model composition, each component is annotated with tags, light-weight 

semantic descriptions of the component’s inputs, outputs, and configuration parameters, as shown in 

Figure 7 and described in an earlier section (MARIO: A New Approach to Model Integration).   

Figure 7 (top) includes a fragment of this application’s tagsonomy, beginning at the top with tags 

corresponding to the 9 top-level model configuration options (e.g., RainfallMeasurementFrequency). 

The descendant tags extending UpperLayerSoilArchitecture represent the various upper layer 

architecture choices shown in Figure 3; for example, the 

UpperLayerDividedIntoTensionStorageAndFreeStorage tag reflects the Sacramento architecture, while 

UpperLayerUndivided a reflects an architecture shared by TOPMODEL and ARNO/VIC. 
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Component descriptions are expressed in XML.   For example, the following fragment describes the 

MiscellaneousFluxes_TensionReservoirWithTwoParallelTanks component (Figure 7):  

<component  name="MiscellaneousFluxes_TensionReservoirWithTwoParallelTanks"> 

 <in name="Input1"   tags=" PercolationFromUpperToLowerSoilLayers "/> 

 <in name="Input2"   tags=" LowerLayerArchSelected  TensionReservoirWithTwoParallelTanks"/> 

 <in name="Input3"  tags="UpperLayerArchSelected UpperLayerNotSubdivided"/> 

 <out name="Output1" tags="OverflowFromLowerLayer"/>      

 <out name="Output2" tags=" OverflowFromTensionStorageToFreeStorage_LowerLayer"/>  

 <out name="Output3" tags="OverflowFromPrimaryLinearReservoir"/>     

  <out name="Output4" tags="OverflowFromSecondaryLinearReservoir"/> 

 <binding type="spade">…</binding> 

</component> 

 

As indicated in Table 1, row 28, this component computes overflow among various compartments 

related to the lower soil layer.  Here, the input constraint captured as Input1 is tagging the input with 

PercolationFromUpperToLowerSoilLayers. As  indicated in Figure 7 by the gray dotted line, this 

constraint can be satisfied by matching Input1 above to the output of the Percolation… component, also 

tagged with PercolationFromUpperToLowerSoilLayers.  This component’s relevance is limited to 

assemblies where specific lower and upper layer architectures have been selected. These constraints are 

described in definitions Input2 and Input3 above, which express 1) that the respective architecture has 

been selected (LowerLayerArchSelected and UpperLayerArchSelected, ), and 2) that it matches the 

specified value (TensionReservoirWithTwoParallelTanks and UpperLayerNotSubdivided), ie the 

Sacramento soil architecture (Figure 3 c).   

Enforcing Semantic Constraints 

MARIO’s tagging and composition rules are the mechanism by which Frankenmodels are prohibited and 

correctly formed models are constructed. In this section we show how MARIO enables our IMF to meet 

the three aforementioned challenges:  1) generate compositions of model components that accept the 

desired input data and produce the desired output data; 2) allow all scientifically valid compositions of 

components; and 3) disallow all scientifically invalid compositions.  MARIO uses a combination of match 

rules and propagation rules to represent semantic constraints. By this means, we whittle down the 

>250K possible combinations of component choices in Table 1 to the 316 valid compositions.   

For example, suppose a user chooses the PRMS soil architecture (see Figure 3 b), which models the 

upper soil layer as a free storage tank plus two tension storage tanks (recharge and excess).  As  Table 1 

indicates, this architecture selection limits choices in the following components:   

• Evaporation from Upper Soil Layer (row 6 or 7 only) 

• Evaporation from Lower Soil Layer (row 12 only) 

• Miscellaneous fluxes (row 24 only) 

• Solve State equations (row 31 only) 
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MARIO ensures that these components and only these components are selected, given the architecture 

choice, by associating the tag UpperLayerSubdivided and its children exclusively to them.   

 

Not evident in Table 1 is a more subtle constraint, represented in FUSE by a FORTRAN if-statement:  “do 

not allow percolation below field capacity if the upper soil layer has multiple tension storage tanks”, 

namely, the excess and recharge zones.  Therefore the choice of PRMS upper soil architecture limits the 

choice of percolation components to choices 2 and 3.  As introduced earlier, parent tags were used in 

MARIO to express this constraint.  For this case, UpperLayerUndivided, a specific type of 

UpperLayerSoilArchitecture, was classified as being an UpperLayerArchitectureSingleTank.   All other 

upper layer architectures were classified as UpperLayerArchitectureMultipleTanks. To enforce the 

above constraint on percolation, we explicitly restricted the Percolation_WiltPointToSat component to 

be assembled only when the upper layer architecture is one of the children of 

UpperLayerArchitectureSingleTank.  Note that UpperLayerUndivided is currently the only upper layer 

architecture defined as UpperLayerArchitectureSingleTank; if a new kind of upper architecture were to 

be introduced and classified as a single tank architecture, it would automatically be allowed in the 

assembly with Percolation_WiltPointToSat, with all other combinations still being excluded. This occurs 

without any additional procedural programming, and without recompilation and/or reinstallation of 

MARIO.   

Results 

The culmination of our current work is an interface whereby hydrologist users can interact with MARIO, 

select among model composition options, examine the resultant assembled flows, refine goals, etc., and 

where component developers can insert additional components for immediate inclusion in subsequent 

user requests. When our work is complete (with component descriptions bound to real, running code in 

FORTRAN, SPADE , C++, etc.), those users could, at any time, submit any assembled flow for deployment 

and operation and can view result data via a variety of data visualizers.  

As currently configured, users can interact with MARIO to do two main things: 1) guide MARIO to 

construct any of a large number of scientifically valid model compositions by selecting among the FUSE 

model configuration options, and 2) browse and select combinations of the many available flux and 

state computations and apply these “sub-models” to precipitation data for visualization and exploration. 

Since MARIO applies its composition rules to the component semantic descriptions, any selectable 

combination of tags – complete water models or finer grained flux calculation sub-models – is a valid 

and deployable composition, assuming that the developer has correctly crafted both the component 

descriptions and the associated computation code. 

A hydrologist’s first view of MARIO for FUSE can be seen in Figure 6a. Here, the user can 1) have MARIO 

construct total water analysis models (under the Simulations tab) or 2) select among the various fluxes 

and calculations (under the Exploration tab).  

Model configuration options for Simulations, reflected in Figure 6b, are grouped into facets, 

corresponding to the Calculation column of Table 1.  Figure 6a (right) shows the top-ranked composition 
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graph produced when two configuration options have been selected ( UpperLayerUndivided for the 

Upper Soil Layer Architecture and PercolationFromFieldCapacityToSaturationArea for the Percolation 

Water Availability facet).  Note that MARIO has automatically assembled a complete, ready-to-deploy 

simulation, selecting options for each as-yet unspecified category.
6
  The user can deploy this simulation 

or can continue to refine the goal.  

Figure 6c shows the fully elaborated, user-selected goal consisting of one option from each category 

(left), and the corresponding flow composition assembled for that goal (right).  The flow diagram has 

been annotated to describe each computational component. The description of each has been 

abbreviated. It is possible to identify which of the 39 flux computation components has been selected by 

its name, in combination with the model decisions, which are represented in the paired blue and red 

components. For example, the component for calculation of Saturation and Surface Runoff would be 

component  3 (Table 1), because the selected method is 

ARNO_X_VICStyle_SatAreaSurfaceRunoffCalculation. 

As mentioned above, the initial set of model elements and computational components can be extended. 

As component developers identify new soil architectures and/or new ways to calculate fluxes, they 

register these new elements with MARIO; hydrologists can employ the new options and components 

immediately. Other analytic toolkits can be incorporated, including those available with InfoSphere 

Streams, to apply, e.g., comparative analytics to collections of models. Also, additional data sources can 

be added, such as web-accessible datasets and even live streaming water sensors. Given a scalable 

model runtime environment such as InfoSphere Streams, many analyses across multiple, high volume 

data sources provide an environment for high performance water data analysis and exploration.  

Discussion 

In this paper we have shown how the semantic tagging and model composition engine of the MARIO 

project enable us to meet three critical challenges of an IMF:  1) generating valid chain(s) or 

compositions of model components,  given a definition of starting and ending states ; 2) allowing all 

scientifically valid compositions of components;  and 3) disallowing compositions that are scientifically 

invalid, i.e., that combine model components whose basic assumptions about quantities like soil 

architectures or evaporation schemes conflict.    The advantages of this system when compared to other 

model framework systems mentioned in the Motivation section are many.  A declarative approach to 

constraint specification frees users from the error-prone and tedious practice of manually programming 

constraints in FORTRAN via nested loops and CASE statements.  The tagsonomy allows the expression 

and enforcement of constraints that are higher level than simple type-checking of inputs and outputs of 

model components.   Since constraint specification is declarative, it is relatively easy to extend the 

system with new components written (or wrappered) to the MARIO/SPADE interface specification—

whether components that compute the same fluxes in a new way, or components that compute new 

                                                             

6
 The complete graph was generated to satisfy _FullModelResultSet, and implicit goal element for Simulations. 

This tag represents the generation of all result data output by each FUSE simulation. 
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fluxes.  MARIO’s flow generation and automatic composition enable multiple different compositions of a 

set of components to be generated and run---invaluable in a multi-model, ensemble-based modeling 

approach.  Unlike the case of models written as monolithic FORTRAN programs, MARIO’s handling 

computation at the component level allows the investigation of intermediate results at any stage along 

the model composition flow. 

There is nonetheless further work to be done before we can demonstrate a fully functional IMF.   In this 

paper we focused on componentization of models, and the representation and management of 

metadata expressing their semantics.  An obvious next step is to associate these conceptual components 

to executable code, either in FORTRAN for complex computations such as the solution of the differential 

state equations, or in the SPADE language for the relatively simple algebraic expressions used in many of 

the FUSE flux calculations.  The components will then be candidates for parallel execution in InfoSphere 

Streams, which could dramatically increase performance, especially in multi-model, ensemble-based 

methods, or when exploring large parameter spaces in autocalibration/parameter estimation.  The 

stream-based data model of InfoSphere Streams will also facilitate connecting the system to real-time or 

near-real-time streaming sensor data, such as precipitation data.   

Incorporating visualization tools will allow the rich and complex data sets that are produced in the 

stream discharge simulator to be effectively conveyed and will enable non-expert users to make full use 

of the relevant features of the framework.  The MARIO interface will make this task particularly easy, 

since 1) the results of any calculation would be available for presentation to the user, and 2) the user 

need only select the tags corresponding to the desired data to see the data.    

In our further work with this system, we plan to carry out several explorations of extensibility, for 

example:   

• componentizing and incorporating another monolithic model, e.g., the USGS’s Hydrological 

Simulation Program—FORTRAN (HSPF) [14]  

•  integrating simulations of stream discharges from multiple watersheds to determine stream 

discharges in a river network  

• include more hydrologic processes in the stream discharge simulators such as  infiltration-

excess runoff  and processes representing role of vegetation in the hydrologic cycle, such as 

the effect of vegetation canopy on the magnitude and rate of precipitation delivered to the 

soil surface  

• integrating an explicit groundwater model to simulate coupled surface-groundwater systems, 

to allow users to simultaneously manage surface and groundwater resources 

Conclusion 

In this paper we have broken new ground in the development of the Integrated Modeling Framework 

that is needed in many disciplines and domains related to the Intelligent Infrastructure.  We have 

described a research prototype that supports: registering model components in a specific domain; 

expressing the semantics of the model components in a standardized set of metadata; expressing and 

enforcing rich, domain-specific semantic constraints on how model components may be validly 
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composed together and assembled to form larger simulations; and generating valid component 

assemblies, and excluding assemblies which violate the expressed domain-specific semantic constraints, 

thus avoiding Frankenmodels, model assemblies that execute but are scientifically invalid.  We have 

demonstrated this work using the complex, real-world example of the calculation of stream discharge 

from observed precipitation, building on the foundation of real-world FORTRAN modules.  The use of 

this example has challenged and stretched IBM’s MARIO research technology, and in the process 

demonstrated its great utility.   Once model developers have registered the model components and 

their semantics with MARIO, component assemblies may be built by non-expert modelers with the 

assurance that the model semantics will not be violated, and therefore only scientifically valid 

assemblies will be generated and run.    While we have focused on a single complex but fairly narrow 

application domain (stream discharge in hydrology), we fully expect that our approach will be readily 

applicable to a wide variety of related domains (e.g., water quality, carbon balance, crop production, 

and biodiversity), and to other domains that are critical for intelligent water management, e.g., 

demographics, financials, weather, geographic information systems, and real-time streaming data from 

such devices as water meters, water quality sensors, and fault-detection devices in smart levees.   From 

here it is not unreasonable to imagine applications to cities, transportation, utilities, and other key areas 

making up our vision of the Intelligent Infrastructure. 
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Table 1.  Description of flux and state calculations in FUSE, represented as individual model components in 

MARIO. Inputs and outputs that are the same for all options are listed on the row which specifies the 

calculation.  Inputs and comments that differ by option are listed on the row which specifies the option.  

Calculation Model options  Inputs Outputs Comments 

Rainfall Error  Observed precipitation Effective precipitation  

1  Additive error correction   No additional 

inputs  

2  Multiplicative error correction   No additional 

inputs  

 Saturation and 

Surface Runoff 

 Effective precipitation Saturated area 

Surface runoff 

 

3  ARNO Xhang VIC Upper level water   

4  PRMS Variant Upper level tension store   

5  TOPMODEL Parameterization Lower level water   

Evaporation 

from Upper Soil 

Layer 

 Potential 

evapotranspiration 

Total Evaporation, 

plus  evaporation 

from from 2 separate 

upper layer soil 

compartments 

If upper soil 

architecture 

doesn’t support 

multiple 

compartments, 

values set to 0 

6  Tension storage sub-divided into recharge and 

excess; sequential evaporation scheme 

Tension storage in 

recharge and excess tanks 

  

7  Tension storage sub-divided into recharge and 

excess; rootweight evaporation scheme 

Tension storage in 

recharge and excess tanks 

  

8  Single tension store + free store or one state; 

sequential evaporation 

Tension storage   

9  Single tension store + free store or one state; 

rootweight evaporation 

Tension storage   

Evaporation 

from Lower Soil 

Layer 

 Potential 

evapotranspiration 

Evaporation from the 

lower soil layer 

 

10  Lower layer architecture is either fixed size or 

a tension reservoir plus two parallel tanks; 

Upper layer architecture is either single 

tension store+ free store or one state; 

sequential lower-layer evaporation scheme 

Tension storage in lower 

soil layer 

  

11  Lower layer architecture is either fixed size or 

a tension reservoir plus two parallel tanks; 

Upper layer architecture is either single 

tension store + free store or one state; 

rootweight lower-layer evaporation scheme 

Tension storage in lower 

soil layer 

  

12  Lower layer architecture is either fixed size or 

a tension reservoir plus two parallel tanks; 

Upper layer tension storage is sub-divided 

into recharge and excess; 

  Evaporation 

from the lower 

layer is 0 by 

definition 

13  Lower layer architecture is either baseflow 

reservoir of unlimited size (0-HUGE) with a 

fractional rate, or baseflow reservoir of 

unlimited size (0-HUGE) with a power 

recession, or TOPMODEL exponential 

reservoir (-HUGE to HUGE) 

  Evaporation 

from the lower 

layer is 0 by 

definition 

Interflow    Interflow from free 

water in upper layer 

 

14  Some interflow Free water in upper layer   

15  No interflow   Interflow = 0 by 

definition 

Percolation from 

upper to lower 

soil layers 

  Percolation from 

upper to lower soil 

layers 

 

16  water from (field capacity to saturation) avail 

for percolation 

Free water in upper layer   

17  water from (wilt point to saturation) avail for Total water in upper layer   
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percolation 

18  percolation defined by moisture content in 

lower layer (SAC) 

Total water in lower layer   

Baseflow from 

the lower soil 

layer 

  Total baseflow from 

the lower soil layer, 

plus baseflow from 

multiple tanks if 

applicable 

 

19  tension reservoir plus two parallel tanks Free water in the two 

tanks 

  

20  baseflow reservoir of unlimited size (0-HUGE), 

frac rate 

Total water in the lower 

soil layer 

  

21  baseflow reservoir of unlimited size (0-HUGE), 

power recession 

Total water in the lower 

soil layer 

  

22  TOPMODEL exponential reservoir (-HUGE to 

HUGE) 

Total water in the lower 

soil layer 

  

23  baseflow reservoir of fixed size Total water in the lower 

soil layer 

  

Miscellaneous 

fluxes 

Related to upper layer Effective precipitation; 

Surface runoff 

Flow from recharge to 

excess; 

Flow from tension 

storage to free 

storage;  

Bucket overflow; 

 

24  upper architecture tension storage sub-

divided into recharge and excess 

Storage in the recharge 

zone; 

Storage in the lower zone; 

Free storage in upper layer 

  

25  upper layer broken up into tension and free 

storage 

Tension storage in the 

upper layer; 

Free storage in the upper 

layer 

  

26  upper layer defined by a single state variable Total water storage in 

upper layer 

  

27  Related to Lower Layer Percolation from upper to 

lower soil layers 

Flow from tension 

storage to free 

storage; 

Bucket overflow from 

relevant storage zones 

 

28  lower layer architecture is tension reservoir 

plus two parallel tanks 

Tension storage in lower 

layer; 

Storage in the primary 

lower layer reservoir; 

Storage in the secondary 

lower layer reservoir 

  

29  lower layer reservoir is fixed size Total storage in lower layer   

    30 lower layer reservoir is unlimited size   Outputs are 0 

by definition 

Solve State 

Equations 

    

 Related to Upper Layer  Changes in total water 

storage and tension 

and free storage in 

upper soil layer 

 

31 Upper soil layer tension storage sub-divided 

into recharge and excess 

 

 

Effective precipitation; 

Surface runoff; 

Percolation from the upper 

to lower layer;  

Various upper layer fluxes: 

evaporation from soil 

excess zone; 

Flow from recharge to 

excess; 

evaporation from soil 

recharge zone; 
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flow from tension storage 

to free storage; 

Interflow from free water; 

Bucket overflow 

32 upper layer broken up into tension and free 

storage 

 

 

Effective precipitation; 

Surface runoff; 

Percolation from the upper 

to lower layer;  

Upper layer fluxes: 

Evaporation; 

Flow from tension storage 

to free storage; 

Interflow from free water; 

Bucket overflow 

  

33 upper layer defined by a single state variable 

 

 

Effective precipitation; 

Surface runoff; 

Percolation from the upper 

to lower layer;  

Upper layer fluxes: 

Evaporation; 

Interflow from free water; 

Bucket overflow 

  

34  Related to Lower Layer  Changes in total water 

storage and tension 

and free storage in 

lower soil layer 

 

35  lower layer tension reservoir plus two parallel 

tanks 

 

 

Percolation from the upper 

to lower layer;  

Lower layer fluxes: 

Evaporation; 

Flow from tension storage 

to free storage; 

Baseflow from primary 

linear reservoir; 

Baseflow from secondary 

linear reservoir; 

Bucket overflow from 

primary and secondary 

linear reservoirs 

  

36  single state for lower layer 

 

 

Percolation from the upper 

to lower layer;  

Lower layer fluxes: 

Evaporation; 

Baseflow;  

Bucket overflow 

  

Update State 

 

    

37   Changes in total water 

storage and tension and 

free storage in upper and 

lower soil layers 

Total water storage 

and tension and free 

storage in upper and 

lower soil layers for 

new timestep 

 

Overland 

Routing 

 Surface runoff;  Upper 

layer bucket overflow; 

Interflow from free water; 

Lower layer bucket 

overflow; 

Baseflow 

instantaneous runoff;  

Routed runoff 

 

 

38  use a Gamma distribution with shape 

parameter = 2.5 

   

39  no routing   Routed runoff is 

0 by definition 
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Figure 1. Intelligent Infrastructure Reference Architecture.  The Service-Oriented Architectural foundation of the Intelligent 

Infrastructure, integrating (near-) real-time sensor data, analytics, and controls with enterprise data, applications, analytics, 

modeling/simulation, and user interfaces/visualization.  The orange box in the upper right highlights the portion of the 

architecture that this paper addresses. 

Key to abbreviations: ETL= Extract, Transform, Load data warehousing services. GIS = Geographic Information Systems. 

SCADA=Supervisory Control and Data Acquisition. MES=Manufacturing Execution System.  ERP=Enterprise Resource 

Planning.  
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Figure 2. Illustration of hydrologic cycle, including water storage compartments and pathways for water 

movement in the atmosphere and over and through the land surface (fluxes). Components of energy fluxes that 

drive the hydrologic cycle also are depicted. 
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upper soil  

zone evapotranspiration 

lower soil  
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q
sx 
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Sd
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Δ storage 
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q
b
  

e1 
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p

  

e2 
q

12
  

2
Sd
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(a) GENERIC 

(b) PRMS (c) SACRAMENTO 

(d) TOPMODEL 
(e) ARNO/VIC 

Figure 3. Schematic representations of two-zone systems: (a) generic system with terms for changes in water storage for each zone 

and corresponding water fluxes; (b) – (e) parent model modular systems, indicating differences among models in terms of fluxes 

and sub-divisions of zone storages and fluxes. S is storage in each soil zone; e is evapotranspiration from each soil zone; p is 

precipitation; q12  is percolation; qsx is saturation-excess runoff; qif is interflow (lateral flux through the upper layer to the stream); qb 

is baseflow (lateral fluxes through the lower layer to the stream );  Zuz and Zlz are depths of the upper and lower soil layers, 

respectively; θwlt, θfld, and θsat are soil moistures at wilting point, field capacity, and saturation, respectively; indices 1 and 2 denote 

the upper and lower soil zones, respectively;  indices T and F denote stored water held in tension (retained by capillary forces) and 

freely-flowing water in storage; and indices A and B denote further sub-divisions of soil zones. 
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Figure 4. The MARIO cross-platform architecture with example data sources and processing components from 

the financial domain. 
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Figure 5. Model Component Flow diagram.  Text in black labeling arcs connecting two components indicates 

inputs and outputs of model components.  Stacks of green boxes represent options for flux calculations and stacks 

of orange boxes indicate options for calculating state variables.  Ellipses indicate inputs and outputs to the model 

composition as a whole. 
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Figure 6. Screen shots of  6a: the MARIO web UI, 6b: a view showing all Model Configuration facets 

and all selectable option tags in each facet, and 6c: a completely specified FUSE component assembly, 

with a tag selected for each model composition option, and the corresponding processing graph, with 

components annotated.  The blue and red paired boxes depict exclusive choice constraints:  the red 
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box is a singleton selector, allowing exactly one value of the respective model configuration option. 

Without such a constraint, any component calling for, e.g., and upper layer architecture choice could 

be satisfied by any of the upper layer architecture options.  
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Figure 7. Four components, their tag-described inputs, outputs, and parameters, and an associated 

fragment of the FUSE tagsonomy (top). Here, black components are computational components,  red is 

a  special selector component, indicating a unique choice, and periwinkle component is a composition 

parameter, in this case representing the constant UpperLayerUndivided.  
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