Human Fecal Score: A standardized method for MST data interpretation

Yiping Cao, Ph.D.

Microbial Source Tracking Workshop January 23, 2018

Your MST Applications

- How bad or good is this site?
 - Among all sites within your jurisdiction?
 - Compared to a reference site with little human activities?
 - Compared to a site with measured health risk via epidemiology studies?
 - Compared to sites in another jurisdiction?
 - Before and after implementing BMP remediation actions?
- Answers should be based on data, using "scientifically sound and statistically defensible approaches"
 - Study design
 - Lab analysis
 - Data interpretation

The Process

Data interpretation
Site assessment

Action at the site

qPCR raw data (marker concentrations) from n samples

Sampling

Lab analysis

The Practice

- Best professional judgement
 - Different experts in different projects
- Worries
 - Unintentional bias: inherent subjectivity and implementation variability by experts?
 - Intentional bias: hired gun by discharger or regulator?

Sampling

Lab analysis

Data Interpretation

The BPJ Exercise

- Assess variability in MST data interpretation

Create a simulated data set (26 site, 20 sample/site)

Ten experts rank the sites 1 to 26 regarding relative levels of human fecal contamination

- Experts: research scientists and water quality managers
 - from the federal government
 - a public research agency
 - academic
 - a wastewater treatment agency
- Two iterations
 - 1st iteration: no prior discussion among experts
 - 2nd iteration: experts agreed to a set of principles before ranking

BPJ Results Highly Inconsistent

- Experts' interpretation of the same data were highly variable
 - 1st iteration: r= 0.33 to 0.98 (avg: 0.41)
 - 2nd iteration: r= 0.14 to 0.98 (avg: 0.47)

So, how well does BPJ work? – not so well Are we right to worry? - yes

Motivation for Human Fecal Score

• BPJ exercise conclusion: a standardized mathematically defined objective approach is needed!

- Team:
 - SCCWRP: Drs. Yiping Cao, John Griffith, Steve Weisberg
 - USEPA: Drs. Orin Shanks, Mano Sivaganesan, Catherine Kelty
 - Stanford: Drs. Ali Boehm, Dan Wang

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Human Fecal Score (HFS): Simple

- Simple
 - Site average concentration of HF183 marker
 - One number to characterize the extent of human fecal pollution at a site

Human Fecal Score

55

(n samples, 3n data points, for some we don't even have a number for)

sample	Cq	Copy per 100ml
1	36.13	?
1	37.41	?
1	36.05	?
2	Non detect	?
2	Non detect	?
2	Non detect	?
3	Non detect	?
3	Non detect	?
3	Non detect	?
4	30.48	19173
4	30.50	18855
4	30.17	23356
		?
	•••	?
		?
n	Non detect	?
n	Non detect	?
n	Non detect	?

HFS: Complete

- Uses all data
 - non-detect
 - detected but not quantifiable
 - Quantifiable

Human Fecal Score

55

(Can't average nonnumber, e.g. ?)

sample	Cq	Copy per 100ml
1	36.13	?
1	37.41	?
1	36.05	?
2	Non detect	?
2	Non detect	?
2	Non detect	?
3	Non detect	?
3	Non detect	?
3	Non detect	?
4	30.48	19173
4	30.50	18855
4	30.17	23356
		?
		?
		?
n	Non detect	?
n	Non detect	?
n	Non detect	?

How do qPCR quantify?

Grow cells vs. "grow" DNA

qPCR Range of Quantification (ROQ)

- Within Range: Cq linearly inversely relates to marker concentration
- At low concentration: no more linear relationship
 - Can't quantify using the standard curve
- Non-detect: no quantification

Log Marker Concentration

- Previous "solutions"
 - Ignore non-detect and detected but not quantifiable
 - Arbitrarily assign a number
 - DL/2, DL, LLOQ ...
 - Force standard curve outside ROQ
 - Statistics for censored data
 - Not applicable in most cases
- HFS: use underlying Poisson distribution to estimate?'s outside ROQ

(Can't average nonnumber, e.g.?)

sample	Cq	Copy per 100ml
1	36.13	?
1	37.41	?
1	36.05	?
2	Non detect	?
2	Non detect	?
2	Non detect	?
3	Non detect	?
3	Non detect	?
3	Non detect	?
4	30.48	19173
4	30.50	18855
4	30.17	23356
		?
		?
		?
n	Non detect	?
n	Non detect	?
n	Non detect	?

HFS: Based on statistics

- Two different quantification mechanisms
 - Executed by Bayesian models, integrating data uncertainty

HFS allows sampling design optimization

- Certainty accepted by managers/regulators
- Trade-off between sample size and qPCR replication

Willing to accept different chances of getting the right answer?

HFS Application: Prioritizing Remediation

HUMAN FECAL SCORE FOR SITE RANKING

STANDARDIZED PROCEDURE

HFS: Case Studies

HFS Summary

- Simple
- Respect data
 - Use everything
 - Add nothing
 - Respect underlying data distribution
 - Integrate uncertainty in data
- Objective
 - Mathematically defined
 - Build on formulas instead of narratives
- Standardization
 - Use the U.S. EPA standard HF183 qPCR method
 - Sampling design

Sampling

Lab analysis

Data Interpretation

Implications for water quality management

 HFS describes a standardized method for characterizing human fecal pollution level at a site

- General:
 - Other markers: Cow Fecal Score, Gull Fecal Score
 - Other technology: digital PCR
- Potential applications
 - BMP effectiveness
 - Rank sites
 - CSO consent decree compliance
 - QMRA site eligibility

Thank you!

Yiping Cao Vice President of Technology ycao@sourcemolecular.com

