

## California Water Quality Monitoring Council



Data Management and Integration Possibilities

December 7th, 2009

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY







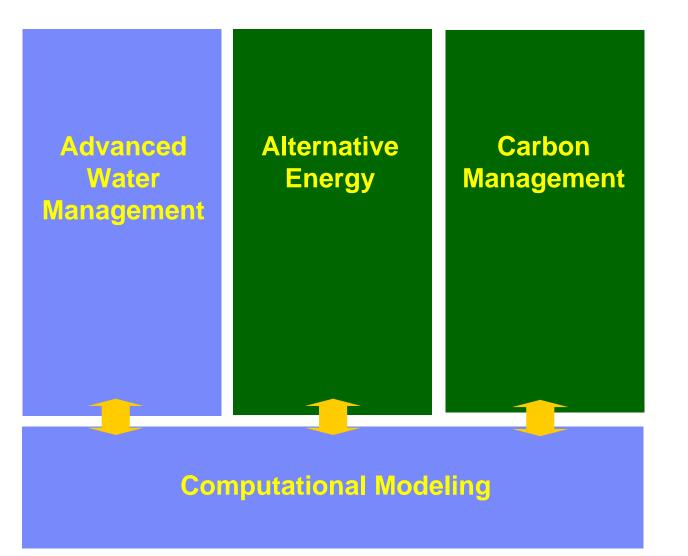
### Introduction



- Intent:
  - To describe examples of IBM's portal creation, and water data management activities
  - To enable a discussion about data management issues relating to water (including habitat) quality management in CA
- Contents

Lake

- IBM and Water Management
- **Example Water For Tomorrow**
- Example Smart Bay










#### "Big Green Innovations"







### Water management: improving information flow & use

"One barrier to better management of water resources is simply *lack of data* .... *The water problem is largely an information problem*".1

"The effectiveness of [water management] decisions depends on the quality of information ...In addition to improved water data the United States should develop and expand ...forecasting and predictive models and systems..."<sup>2</sup> Is our water safe to drink?
 Is it safe to swim in our waters?

- Is it safe to eat fish and shellfish from our waters?
- Are our aquatic ecosystems healthy?

#### What stressors and processes affect our water quality?

**1. Source:** Wired Magazine, "Peak Water: Aquifers and Rivers Are Running Dry. How Three Regions Are Coping", Matthew Power, April 21st, 2008

2. Source: NSTC, "A Strategy For Federal Science And Technology To Support Water Availability And Quality In The United States, - Report Of The National Science And Technology Council Committee On Environment And Natural Resources Subcommittee on Water Availability and Quality", September 2007





### Data "pathologies" - and a prediction

#### No data

- Data is in the <u>wrong scale</u> (spatial or temporal) for the decision
- Data is <u>fragmented</u> between different stakeholders:
  - Different formats, scales, frequencies, standards
  - -Re-capture of data many times
- Too much data to use
- Incompatible or incomplete models mean that data is not leveraged
- Poor visualization of information impedes effective decision-making
  - "So what's this telling us?" syndrome

Prediction:

- "Unless we solve these data problems, some percentage of whatever we invest in water management in California (let's say, 30-50%) will be wasted.
- -But we won't know which 30-50% until something major breaks".





### The skills and assets IBM brings to water management

- World class skills in:
  - Data management and integration
  - Computational model creation and integration
- Portal creation and management
- "System S" streaming data, live modeling
- Cognos and ILOG analysis & visualization
- Smart grid technologies and expertise
- Award-winning water and energy management in our semiconductor plants
- Maximo asset management
- Green Sigma<sup>™</sup> process improvement
- "Deep Thunder" weather forecasting

- In partnership with:
  - Civil & environmental engineering companies
  - Sensor companies
  - Application vendors (eg ESRI, Derceto)
  - Universities
  - DOE and other research labs
  - NGOs
  - Others



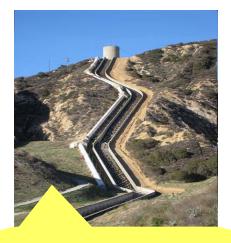
# Our Almaden, CA, lab undertakes much of our research into data management and integration technologies

- Unstructured text search/mining
- Multi-modal data mining extraction and correlation across multiple records
- Adding higher level abstraction and query methods to Apache Hadoop (for distributed applications)
- Data cleansing technologies
- "System T" information extraction from structured and unstructured data
- Visualization techniques
- Extreme database compression for faster retrievals



IBM's Almaden lab near San Jose original home of the hard disk drive, relational database, and many other innovations

... and more...




### We work at - and integrate between - three "scales"

#### **Natural scale**

- Water resource mapping and availability
- Water quality monitoring and management (surface and subsurface)
- Land use analysis
- Extraction monitoring (surface and subsurface)
- Flood control



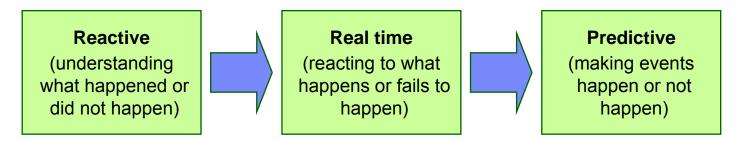


#### **Utility scale**

- Water quality and usage
- Discharge, combined sewer overflow
- Asset management
- "Smart levees" and levee monitoring systems
- Weather event assimilation
- Energy management

#### **Enterprise Scale**

- Water usage tracking
- Water quality control (into and within plants, discharges)
- Supply chain optimization
- Energy management
- Business process improvements
- Metrics and management








### Water quality - transition to predictive management?

 We are detecting an interest among advanced water agencies world-wide to move to a predictive management decision paradigm, by using sophisticated models to anticipate the likelihood of quality issues and enable reactions in advance.



- We would be interested to discuss with CA Water Quality Monitoring Council its perspective on predictive management - for example, predicting at-risk times and locations for excess nutrient enrichment, water warming linked to low flows, and so on.
  - Also, intended approaches to issues such as pathogen sensing, "emergent" contaminants such as estrogen, pharmaceuticals, etc.





### Example - Water For Tomorrow

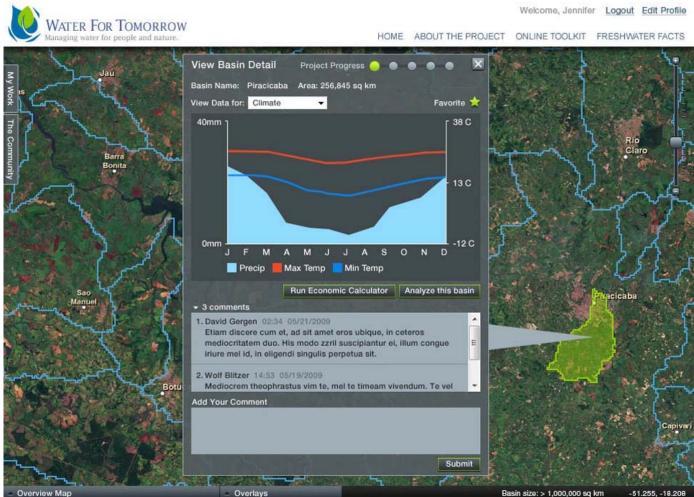




#### Water for Tomorrow - Overview



- Partnership between IBM, The Nature Conservancy, plus academic and public agency partners
- Joint effort to create state-of-the-art technology and collaboration tools to support conservation of the world's freshwater ecosystems
  - Combines rich graphics and dynamic mapping capabilities
- Helps planners and scientists analyze river basins and visualize the effects of different management scenarios on the overall basin health
  - In so doing, initiates collaboration to develop sustainable water management policies
- Grants free and open access to datasets and models to better support water planning science and management

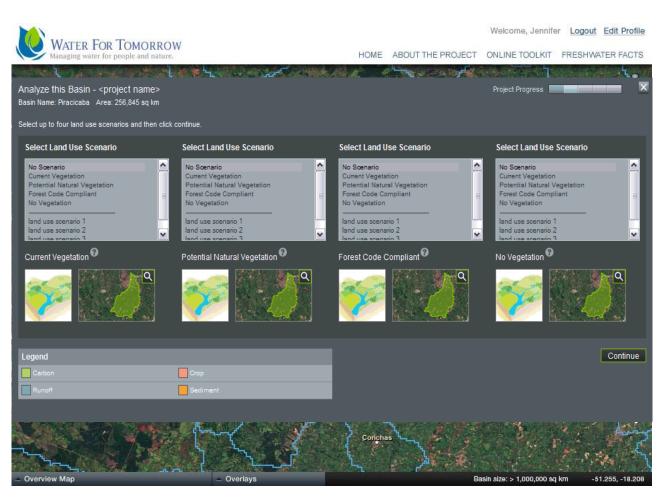







#### **Basin Selection**

- Basins selected by:
  - Use of zoom and pan controls on the interactive map
  - Creating a new basin by delineating areas on the map
  - Uploading a basin file
- This basin is part of the Piracicaba, Capivari and Jundiaí rivers (PCJ) pilot site in Brazil








#### **Scenario Selection**

- A land use scenario is a set of land use practices. Scenarios are used by the WFT hydrology model to compute crop production, water quality, water balance and other variables
- Pre-canned scenarios are provided in the tool, or custom scenarios can be created or imported

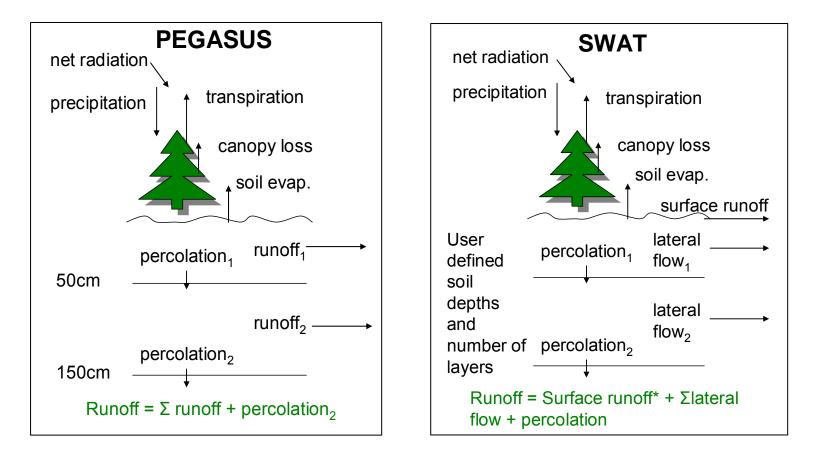






### **Scenarios Modification – Paintbrush Tools**

 Scenarios can be modified by using simple paintbrush tools








#### **Model Integration**

 WFT required extensive semantic harmonization between different hydrological models to ensure 100% valid results across all scenarios

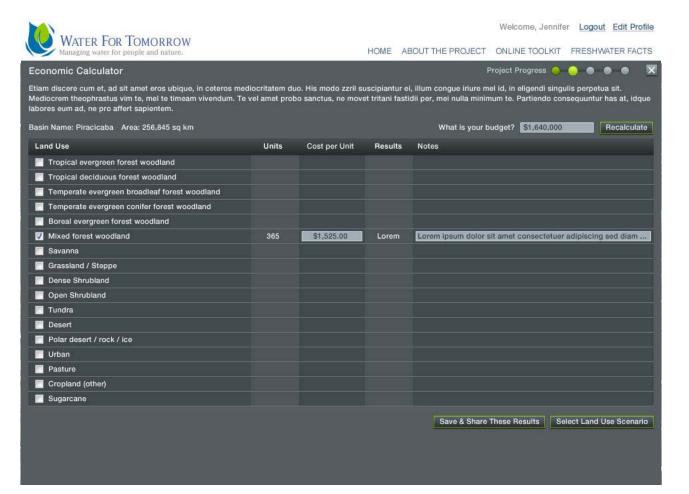






#### **Interactive Visualizations**

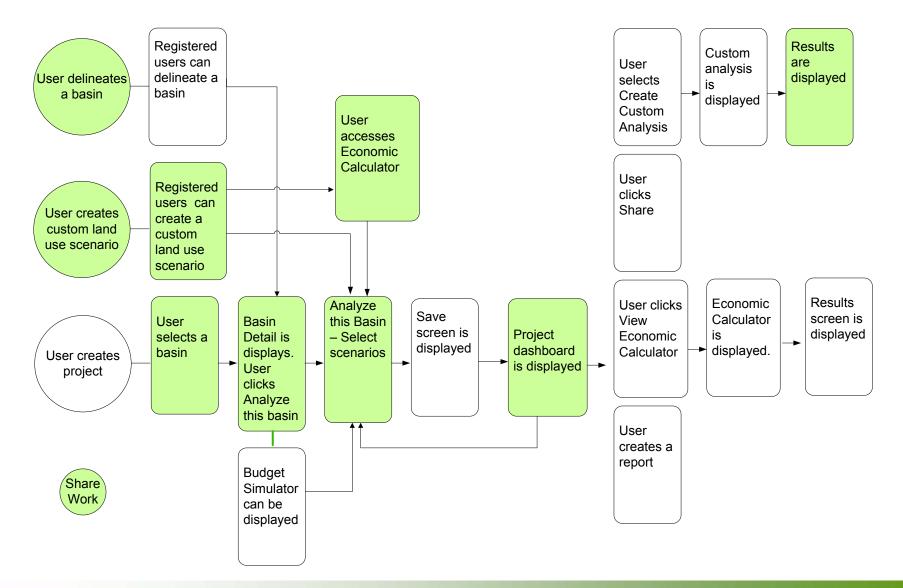
- Multiple visualization methods are offered – charts, graphs, maps etc
- The aim is to provide a "workbench" analyses can be edited, saved, commented on and shared with the user community or pre-defined work groups








#### **Budget Simulator**


- Economic budget simulations can be created for the selected basin
- These enable economic costbenefit analysis of current policies vs ecosystem remediation vs. restoration







#### Water for Tomorrow Toolkit: High-Level Flow







#### Example - Smart Bay





#### **Smart Bay - Objectives**

- Design, test, and implement the next generation water management system (marine and freshwater) for the Marine Institute of Ireland via a collaborative approach
- "Fast-path" a number of new technologies for water management and advanced cyber-physical systems
- Build a "collaboration platform" that enables stakeholders to Galway Bay to work together
  - Integrate scientific and operational management concerns and perspectives











#### One "collaboration platform" supports multiple stakeholders, uses and perspectives

#### **Smart Bay "Collaboration Platform"**

- **Sensor Buoys**
- Nutrients
- Water Quality
- Tides, waves currents **External Data**
- Weather feed
- Observations
- Geospatial

- **IT Infrastructure Features**
- Embedded intelligence
- Wireless communications and telemetry
- Remote device monitoring
- Streaming data real time
- Marine Inst. DB Access
- Models and modeling tools
- Operational applications
- Single programming model
- Public Domain portals
- "2-Clicks" from raw data

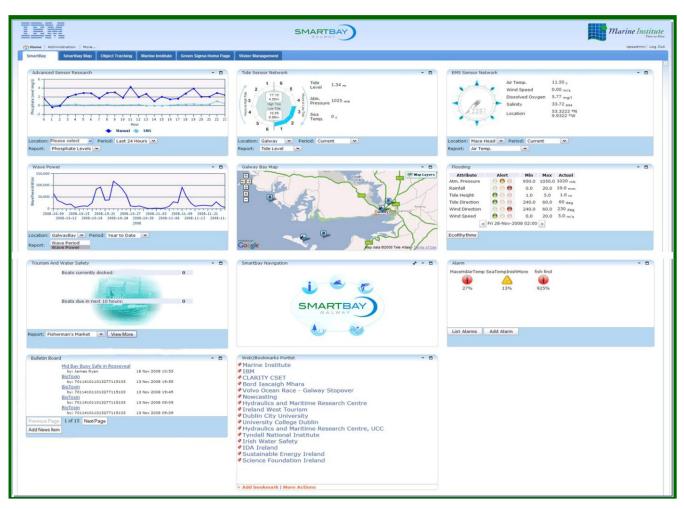
#### Policy

- WFD Europe
- Fisheries protection **Weather**
- Predictive local alerts Tourism
- Volvo yacht race
- Beach management
- Pleasure craft
- LA infrastructure support **Fisheries**
- Floating Hazards
- Biohazard monitoring
- Testing aquaculture

#### Energy

- Testing wave energy devices Safety
- Flood alerts and management
- Water quality
- Water conditions
- Disaster management

#### Science and Education


- Primary, secondary, tertiary
- Research





### Smart Bay User Portal and "Portlets"

- Consistent, unified user interface for diverse set of stakeholders
  - More than a dashboard
  - Analytics
  - Applications
- Each user has own "portlet" accessing single overall data set
- Drill down
  capabilities in all
  cases







## Advanced capabilities for sensors/monitoring platforms – supporting new sensor technology development

- The next generation intelligent sensor platform
  - Real-time decision making at the measurement/monitoring source
  - Improved data quality and consistency
  - High-integrity communications (no critical data loss should communications fail)
  - Advanced remote device management
    - Ability to remotely provision sensor platform
    - Start/stop/load/unload software remotely







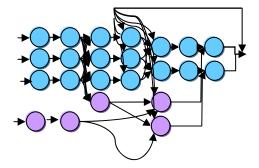
#### Sensor types included in the Smart Bay platform

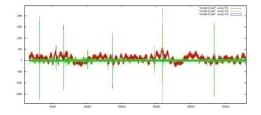
- Water Quality, including:
  - PCO2 (measure of CO2 and H2CO3 reflects alkalinity etc)
  - Colored dissolved organic matter
  - Nitrate, phosphate
  - Temperature, conductivity, salinity, dissolved oxygen, chlorophyll fl, and turbidity - by depth
- Meteorology, including:
  - Atmospheric pressure
  - Wind speed, max gust
  - Wind direction
  - Air temperature
  - Relative humidity
  - Rain intensity, hail intensity
- Oceanographic, including:
  - Spectral harmonic wave detail
  - Sig. wave height, wave period
  - Max wave height, wave period
  - Mean Direction

 Smart Bay offers the ability to manage and integrate these data streams to explore complex, multidimensional questions and issues






#### Current and planned activities


#### Stream analytics

- Real-time analytics for acoustic hydrophone data
- Cetaceans species i/d, protection, population measurement/projection, monitoring/ tracking
- Also processing offline raw data
- Live demonstrator for buoy mounted hydrophones with streaming telemetry in 4Q 09
- Examining other applications for distributed analytics: undersea and research vessel-based processing of high bandwidth data including video streams

#### Data Federation

- Demonstrator to include new capabilities for data federation across Marine Institute - advanced tooling
- Leveraging existing metadata efforts currently underway at MI
- Incorporation of multilayered geospatial data
- Modeling data







### **Benefits of Smart Bay**

- SmartBay provides an open and extensible foundation for:
  - Improved exploitation of the Marine Institute's investment in data, information, and knowledge - supporting mixed research and operational uses
  - Enhanced support for the Marine Institute's industry sector enablement
    - Ability to add significant new functionality and expand support
  - Improved operational consistency with a fully integrated, robust and high-integrity infrastructure
  - Improved monitoring and management of natural assets with better quality, more timely data
  - More effective physical asset protection and management
  - Enhanced sharing of data across functional areas
    - Data standardization, data fusion, data federation
    - Ubiquitous accessibility and computing
  - New level of agility and responsiveness to changing environmental conditions







#### Thank you! peter.r.williams@us.ibm.com

