Managing for Water Sustainability in an Uncertain Future

Fraser Shilling

Department of Environmental Science and Policy UC Davis Presentation to the California Water Quality Monitoring Council, February 19, 2014

lara Lacher, Susana Cardenas, & David Waetjen (UC Davis)

with Abdul Khan, Rich Juricich, & Kamyar Guivetchi (DWR) Vance Fong & Don Hodge (USEPA) Council for Watershed Health & SAWPA Pacific Institute, Sacramento River Watershed Program, Napa County, and South Yuba River Citizens League

indicators.ucdavis.edu

Previous Work with Indicators

- * SF Bay Score Card (bay.org)
- * Beach Report Card (brc.healthebay.org)
- * Ski Resort Report Card (SNA et al.)
- * SGC Regional Reports (SGC.ca.gov)
- Caltrans (CTP), CA Dept Education (SARC), CDPH (HCI)
- * CalFire (FRA), CDFW (CWAP)

Domains of Concern

My Previous Work with Sustainability Indicators

- Measuring whole system condition and performance
- Consistent with global literature, while breaking new ground
- Test cases in Yuba River, Lower
 Sacramento River, Feather River, Napa River, and Los Angeles River

Report Cards	Goals	lcon	Objectives
	A. Maintain and improve	6	 Protect receiving waters from pollution to comply with current and future water quality regulations
	supply to sustainably		 Maintain water quality for healthy aquatic systems*
	meet the needs of		3) Protect the quality of drinking water supplies
	natural and human communities		 Maintain and restore natural stream flows for aquatic and riparian communities*
			5) Maintain water supplies to meet human needs within the watershed
	P Protoct and onhanco		1) Protect and enhance native fish populations, including anadromous fish*
	native aquatic		2) Protect and enhance bird populations
	and terrestrial		3) Protect and enhance amphibian populations
Sacramento River Basin	species, especially		 Protect and enhance mammal populations*
Report Card & Technical Rep	species and natural		5) Protect and enhance native invertebrate communities*
FEATHER RIVER WATER App Watershods in Southorn California	communities		6) Discourage and reduce invasive, non-native species
Water Shed	C Drotoct and onhonce		1) Protect and enhance riparian habitat quality
restant Petruny 2011	landscape and		2) Protect and enhance wetland habitat quality
	habitats structure		3) Protect and enhance aquatic habitat connectivity*
A MONT A CONTRACT OF ANY ANY	and processes to		4) Protect and enhance terrestrial habitat connectivity*
	and watershed		5) Maintain and restore stream geomorphic processes
	functions		 Optimize primary production and nutrient cycling to support aquatic and terrestrial communities* (for N)
			7) Manage land-uses to reduce impacts on aquatic and terrestrial habitats
	D. Maintain and restore		 Reduce high severity fire frequency; encourage natural fire regimes that support native communities*
Napa River Watershed Report C	processes that balance benefits for		 Reduce flood risk to human communities; encourage natural flood processes that support native communities*
2010	natural and human communities		 Reduce greenhouse gas emissions and encourage activities to adapt to climate change
	E Maintain and		1) Protect and enhance wildlife friendly agricultural practices*
Lower Sacramento River	improve the social		2) Improve grazing management
Zorr water Quality Report Caru	and economic		3) Encourage sustainable land use practices
	conditions, including benefits from healthy		 Improve community economic status in balance with watershed condition*
	watersneds		5) Improve community relationship with watershed processes
			6) The watershed supports sustainable social practices
			7) Support and improve human uses associated with watershed condition*
The Sacramento River Watershed Program			8) To have widespread community awareness and deep civic engagement in the protection and improvement of watersheds*

Sub-Watershed Condition Score (0 – 100)

Goals	Measurable Objective	Indicators	ENFF	NFF	MFF	LF	NY	MY	SY	DC	LY	UB	LB	Trend	Confidence
Water quality and supply for natural	Water quality for aquatic health	Water temperature, algae, mercury in fish	73	75	38	50	53	47	39	35	13	40	61		medium-hig
and human communities	Maintain natural stream flows	Current flow vs. historical flow	69	n/a	n/a	54	n/a	n/a	n/a	63	40	60	41	n/a	medium
Protect and restore	Native birds	Bird species richness	100	n/a	100	100	100	100	100	n/a	100	100	100		medium
plants	Protect native aquatic communities	Land disturbance, aquatic insects, fish	69	64	69	61	66	69	62	47	55	61	82		high
Protect and enhance habitats,	Protect aquatic connections	Barriers to aquatic organism movement	77	82	76	82	82	76	79	69	77	67	79	n/a	medium-hig
ecosystems, and watersheds	Protect landscape connections	Barriers to wildlife movement	23	81	44	5	54	27	100	5	11	14	2	n/a	high
	Maintain natural production and nutrient cycles	Carbon storage and sequestration, nitrogen loads	88	93	63	94	93	89	93	48	96	91	96		medium
Maintain and restore natural	Restore natural fire regimes	Fire frequencies compared to expected frequency	2	9	14	39	2	3	4	12	15	0	4		medium
disturbance	Encourage natural flooding, while protecting people	Floodplain access	n/a	n/a	n/a	43	n/a	n/a	n/a	n/a	70	n/a	38	n/a	low
Improve social and economic conditions	Enhance wildlife-friendly agriculture	Pesticide use and organic agriculture	100	99	100	51	n/a	98	100	100	17	100	62		medium-hig
& benefits from healthy watersheds	Improve community economic status	Poverty measure Table E.1 — How well are we meetin Feather River watershed?	49 ng goals and	52 d objectives	54 for the	34	64 Tat	32 ble 4 – The J	40 Arroyo Sec	73 o Report Ca	35 ard	70	61		high

Goals	Measurable Objective	Condition	Trend	Confidence
Water quality and supply for	Water quality for aquatic health	51	+	Medium-high
natural and human communities	Maintain natural stream flows	55	n/a	Medium
	Native birds	100	\Leftrightarrow	Medium
Protect and restore	Native invertebrates	46	\Leftrightarrow	High
plants	Native fish	49	\Leftrightarrow	High
	Agricultural/urban development	90	n/a	Medium
Protect and enhance habitats, ecosystems, and watersheds	Protect aquatic connections	77	n/a	Medium-high
	Protect landscape connections	33	n/a	High
	Maintain natural production and nutrient cycles	82	+	Medium
Maintain and	Restore natural fire regimes	9	+	Medium
restore natural disturbance	Encourage natural flooding, while protecting people	50	n/a	LOW
Improve social and economic	Enhance wildlife-friendly agriculture	83	1	Medium-high
conditions & benefits from	Improve community economic	51	+	High

Goal	Indicators	Condition	Trend	Confidence	
To sustainably manage local water supplies for human and natural communities.	Per capita water use	94	Not Assessed	High	
	Healthy Surface Waters	60	Not Assessed	Moderate	
	Rain reaching groundwater	59	Not Assessed	Moderate	
To have widespread community awareness and deep civic engagement in the protection and improvement of watersheds.	Local Government Action	44	Not Assessed	Moderate	
To conserve and restore a diversity of native habitats to support fish and wildlife.	Presence of Native Wildlife	59	Not Assessed	Moderate	
	Protected Native Habitats	60	0 Not Assessed H		
	Habitat Intactness	57	Not Assessed	High	
To restore or simulate natural	Storm Flow Pattern	55	Not Assessed	Moderate/High	
disturbance processes that balance benefits for human and natural communities.	Wildfire Pattern & Intensity	75		High	
To meet human needs and	Aquatic Recreation	82	Not Assessed	Moderate	
enhance the quality of life by improving the conditions of watersheds and their	Vegetated Residential Area	83 Not Assessed		Moderate	
ecosystems.	Equitable Park Access	55	Not Assessed	Moderate	
Overall Score:		65.25			

Analytical details

Quantitative targets must be defined, existing distance to target is then measured for each metric or indicator on a 0-100 scale.

> Spatially co-located sites are compared and potentially lumped. Typically, scores are derived from raw data at the resolution of the raw data, then lumped to a sub-watershed reporting scale

Trends analysis primarily using Mann-Kendall, Seasonal Kendall, Regional Kendal. Sen slope estimation

> Confidence is based upon quantitative estimates (e.g., standard deviation of the mean) and qualitative determinations of certainty about the indicators themselves, the data quality and relevance to the indicator

Scoring: "Distance to target" or axiological normalization*

 Compare with (1) empirical normalization where min and max value in study area are used to set range (HWI), or
 (2) statistical normalization where values are standard deviations from mean, or (3) comparison to one reference (typical), or (4) no normalization (typical)

Web reporting

Table E.1 — How well are we meeting goals and objectives for the Feather River watershed?

Goals	Measurable Objective	Condition	Trend	Confidence
Water quality and supply for	Water quality for aquatic health	51	$ \clubsuit $	Medium-high
natural and human communities	Maintain natural stream flows	55	n/a	Medium
	Native birds	100	$ \clubsuit$	Medium
Protect and restore	Native invertebrates	46	\Leftrightarrow	High
plants	Native fish	49	$ \clubsuit $	High
	Agricultural/urban development	90	n/a	Medium
Protect and enhance habitats, ecosystems, and watersheds	Protect aquatic connections	77	n/a	Medium-high
	Protect landscape connections	33	n/a	High
	Maintain natural production and nutrient cycles	82 🤇		Medium
Maintain and	Restore natural fire regimes	9	$ \clubsuit$	Medium
restore natural disturbance	Encourage natural flooding, while protecting people	50	n/a	Low
Improve social and economic	Enhance wildlife-friendly agriculture	83		Medium-high
benefits from healthy watersheds	Improve community economic status	51	+	High

http://ice.ucdavis.edu/waf/

Trend Analysis

There was a statistically significant upward trend in school lunch program enrollment over the 22-year period (p < 0.001), with a 1.0% increase per year. This significant increase in enrollment was true of both Napa County and Solano County schools. In Napa, the increase in enrollment was 0.6% per year and in Solano, 1.6% per year. Forty-two of the watershed's 87 schools individually increased in enrollment (p < 0.05), with 41 showing no statistically-significant change, and 4 Napa County schools showing a decrease in enrollment.

Next Stage: California Water Plan Update 2013 Water Sustainability Indicator Framework

End use of assessments from the Framework

State and Region Pilots

- State project was advised by Water Plan staff, members of the Inter-Agency Steering Committee, the Public Advisory Committee, and the Tribal Advisory Committee
- Pilot was a result of partnership with Santa Ana Watershed
 Project Authority and Council for Watershed Health
- Associated with the "One Water One Watershed 2.0" process

Themes/categories/domains

- * Water Supply Reliability
- * Water Quality
- * Ecosystem Health
- * Social Benefits and Equity
- * Adaptive and Sustainable Management

CA Water Sustainability Goals

California Water Plan Update 2013

Goal 1. Manage and make decisions about water in a way that integrates water availability, environmental conditions, and community well-being for future generations.

Goal 2. Improve water supply reliability to meet human needs, reduce energy demand, and restore and maintain aquatic ecosystems and processes.

Goal 3. Improve beneficial uses and reduce impacts associated with water management.

Goal 4. Improve quality of drinking water, irrigation water, and in-stream flows to protect human and environmental health.

Goal 5. Protect and enhance environmental conditions by improving watershed, floodplain, and aquatic condition and processes.

Goal 6. Integrate flood risk management with other water and land management and restoration activities.

Goal 7. Employ adaptive decision-making, especially in light of uncertainties, that support integrated regional water management and flood management systems.

Sustainability Indicators: California

Indicator Name	Sustainability
	Goals
Aquatic Fragmentation	5
Baseline Water Stress	1,2
California Stream Condition Index	5
CalEnviroScreen-Groundwater Threats	4
Geomorphic Condition	5,6
Groundwater Quality-Nitrate	4
Groundwater Stress	2
Historical Drought Severity	2,5
Historical Flooding	6
Interannual variability	2,5,7
Native Fish Species	5
Public Perceptions of Water	7
Return Flows	2,3
Threats to Amphibians	5
Upstream Protected Lands	2,4
Upstream Storage	2,3
Water Footprint	1,2,7
Water Quality Index	4
Water Use and Availability	2

State pilot indicators and indices and corresponding Sustainability Goals. 19 of 120 indicators in the Water Plan Sustainability Indicators Framework

SAWPA Water Sustainability Goals

SAWPA One Water One Watershed 2.0

Goal 1: Maintain reliable and resilient water supplies and reduce dependency on imported water

Goal 2: Manage at the watershed scale for preservation and enhancement of the natural hydrology to benefit human and natural communities

Goal 3: Preserve and enhance the ecosystem services provided by open space and habitat within the watershed

Goal 4: Protect beneficial uses to ensure high quality water for human and natural communities

Goal 5: Accomplish effective, equitable and collaborative integrated watershed management in a cost-effective manner

Sustainability Indicators: SAWPA

Indicator Name	SAWPA OWOW 2.0
	Sustainability Goal
Proportion of Water Use from Imported and Recycled Sources	1
Water Use (per capita)	1
Local Water Supply Reserves	1
Adoption of Sustainable Water Rates	1
Water Availability and Stress (WRI Aqueduct 2.0)	1
Annual Water Resource Energy Use Relative to Rolling Average	1
Stream Network with Natural Substrate Benthos	2
Impervious Surface: Water Quality Index and Geomorphic Condition	2,4
Coastal Impacts from Sea Level Rise	3,5
Aquatic Habitat Fragmentation	2
Open Space for Recreation	3
Invasive Species and Native Landscapes	3
Area with Restoration Projects and Conservation Agreements	3
Exceedance of Water Quality Objectives in Watershed	4
Exceedance of Groundwater Salinity Standards	4
Exceedance of Water Quality Objectives at Discharge	4
Exceedance of Water Quality Objectives at Recreation Sites	4
Biological Condition Index	3,5
OWOW (Stakeholder-Community) Participation	5

Scoring: Example impervious surfaces and geomorphic/flooding processes

20

Scoring: Changing the scoring model

Nitrate concentration less than or equal to the background nitrate concentration in groundwater in the Central Valley (9 mg/L; Harter et al., 2012) receive a score of 100. Nitrate concentrations greater than 45 mg/L (MCL) receive a score of 0.

Scoring: Changing the scoring model

Nitrate concentrations less than the MCL receive a score of 100 and concentrations >45 mg/L up to the mean of all groundwater samples in California's water supply wells in 2012 (87 mg/L; score = 0) receive scores proportional to concentration.

Scoring: Changing the scoring model

Nitrate concentration of o mg/L gets a score of 100, concentrations above the MCL receive a score of 0, and intermediate concentrations receive proportionally intermediate scores.

Sample Findings: California

Water use by DWR planning area

Water supply wells affected by contamination

Sample Findings: California

Aquatic fragmentation from roadstream crossings Current presence of native fish species relative to historic presence.

Findings: Public views on water systems and investments

Public Perception of Effects of Climate Change on Future Water Supplies (July 2011, sample = 4,580)

Public Perception by Region of Seriousness of Threats to the Public Water Supply (December 2012, sample = 7,315)

■ Big problem ■ Somewhat of a problem ■ Not much of a problem ■ Don't know

Data Source: Public Policy Institute of California

Very concerned Somewhat concerned Not too concerned Not at all concerned Don't know

Public Perception of Security of Future Water Supplies (December 2009, sample = 1,825)

Data Sources: JPL, Global Footprint Network, CSUMB-NASA/AMES

Sample Findings: SAWPA

Evaluation of (a) "baseline water stress", (b) geomorphic condition (GC), and (c) California Stream Condition Index indicators at the SAWPA scale.

Evaluation of (d) aquatic fragmentation from roads and dams, (e) water quality index, and (f) native fish community indicators at the SAWPA scale.

Evaluation of (g) sea level rise threats to infrastructure, wetlands, and population and (h) nitrate in groundwater indicators at the SAWPA scale.

Water Footprint

- Blue, green, and grey
- Water consumption
- Internal and external

Blue Water Green Water Grey Water

Examples

California's Water Footprint in 2010 (*gray water footprint not calculated)

California's Water Footprint, 1992-2010

Sources of Variation

Like all measurements, the water footprint has several types and sources of variation. An individual's WF can vary with income, diet, and consumption patterns. California's WF for agricultural production varied due to variations in crop-specific irrigation and evapotranspiration rates, which affects the WF.

Table 1. % Change in CA Water Footprint and its components due to variability of water footprints of the nine main crops statewide

	1992	1997	2002	2007				
% Change in CA Water Footprint of Agricultural Production								
Lower bound*	-27%	-27%	-27%	-26%				
Upper bound*	+33%	+33%	+34%	+33%				
% Change in CA Blue Water Footprint								
Lower bound*	-24%	-24%	-20%	-23%				
Upper bound*	+29%	+29%	+25%	+29%				
% Change in CA Water Footprint								
Lower bound*	-12%	-10%	-7%	-8%				
Upper bound*	+14%	+12%	+9%	+10%				

Web-Based Decision Support Tool

- Global indicators catalog
- * Water Plan indicators
- * Evaluated indicators at state and region scales
- * Geo-portal
- * What-if scenarios

http://indicators.ucdavis.edu

Indicator Maps

Map Overview and Help

This tool allows you to see the mapped results for 16 Water Sustainability Indicators. You can select a basemap from "Base Layers" drop-down menu. The default is the "MapBox World Bright" map, which has very little detail. To get more local detail when you zoom in, select the "Google Maps Normal" layer. Maps can be displayed by checking the box next to the indicator in the menu to the right of the map view. We suggest selecting one at a time. HR = hydrologic region, HUC8 = river watershed, HUC10 = river subwatershed, HUC12 = creek watershed,

Map layers

Base layers MapBox World Bright Overlavs California County Boundaries California Jurisdictional Dams □ California USGS Stream Gages □ Aquatic Fragmentation -- HUC8 □ Aquatic Fragmentation -- HUC12 □ Aquatic Fragmentation -- HUC10 California Stream Condition Index -- HUC □ California Stream Condition Index -- HUC □ California Stream Condition Index -- HUC □ CalEnviroScreen -- HUC8 □ CalEnviroScreen -- ZIP □ Geomorphic Conditions -- HUC12 □ Geomorphic Conditions -- HUC10 Geomorphic Conditions -- HUC8 □ Groundwater Nitrate -- HR Groundwater Nitrate -- HUC8 □ Native Fish -- HUC8 Native Fish -- HUC12 🗆 Native Fish -- HR □ Water Quality Index -- HUC8 🗌 Water Quality Index -- HUC10 □ Water Quality Index -- HUC12 □ WRI: Historical Floooding □ WRI: Threats to Amphibians □ WRI: Upstream Storage □ WRI: Inter-annual Variabilty □ WRI: Baseline Water Stress UWRI: Historical Drought

□ WRI: Upstream Protected Lands

□ WRI: Return Flows

CWQMC Opportunities

- * Support integrated, federated water information system for CA (potentially useful in times of drought), for example My Water Quality + Water PIE + DRINC
- * Support development of real-time/automated indicators, integrated with information systems (saves \$)
- * Support annual water sustainability report cards for water flows, supplies, replenishment, quality, biota, cycling, use, etc.
- * Support agency/academy collaboration to report on sustainability in general

Contact & More Information

*Indicators.ucdavis.edu

*fmshilling@ucdavis.edu

