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 Past anthropogenic activities in the state of California have led to an increase in levels of 

mercury found in many of the state’s freshwater fish species. The Surface Water Ambient 

Monitoring Program- Bioaccumulation Oversight Group (SWAMP-BOG), funded by the 

California State Water Resources Control Board, conducted a study examining fish-tissue 

mercury concentrations in various lakes and reservoirs throughout the state. However no samples 

were analyzed for mercury or methyl mercury at any of the locations sampled.  This study, 

funded by the State Water Resources Control Board for the development of methyl mercury 

bioaccumulation factors,  served to supplement the SWAMP-BOG data by collecting water data 

to address the factors controlling mercury accumulation in fish. This included the calculation of 

methyl mercury bioaccumulation factors, collection of ancillary water measurements to help 

explain methyl mercury concentrations in water and fish, and developing correlations between 

the fish and methyl mercury water data.   

 Mercury lake concentrations varied considerably among lakes especially during stratified 

regimes where noticeable increases occurred in both near surface and bottom water methyl 

mercury concentrations. There is some evidence to suggest buildup of aqueous methyl mercury 

may be occurring in the thermocline in some lakes and which could be associated with lake 

oxygen levels. These lakes may benefit by the installation of pumps or bubblers to reduce methyl 

mercury concentrations in fish. There is also some evidence that increasing phytoplankton 

concentrations in lakes may reduce methyl mercury concentrations in fish as well. There were 

several factors that stand out as potential controlling factors that influence mercury 

concentrations in fish. These include methyl mercury in near surface waters and total mercury in 

sediments. To determine potential sources of methyl mercury in near surface waters however 

will require mass balance studies in each lake.  
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 California’s historic gold and mercury (Hg) mining has led to a significant amount of 

mercury being released into the environment (Wiener and Suchanek 2008). As a result, many of 

California’s lakes and rivers have become impaired due to high levels of mercury found in local 

populations of fish (Davis et al. 2009; Melwani et al. 2009). While most of the mercury in 

California exists as inorganic mercury (HgII and Hg0), the organic and highly toxic form is 

methyl mercury (MeHg). Bacteria convert  mercury to methyl mercury which is concentrated by 

microorganisms and subsequently biomagnified in food webs (Wiener et al. 2003). Nearly all of 

the mercury accumulated by fish and higher trophic levels is methyl mercury (Bloom 1992) 

which, when consumed, can adversely affect human health and wildlife. 

 Human consumption of fish species containing methyl mercury, even in low 

concentrations, can adversely affect the nervous, renal, immune, and reproductive systems in the 

adult, child, and developing fetus stages of human life (Zahir et al. 2005). Methyl mercury has 

also been shown to impair foraging efficiency, adversely affect endocrine systems, and 

reproduction in fish (Drevnick and Sandheinrich 2003; Hammerschmidt et al. 2002) and birds 

(Brasso and Cristol 2008; Schwarzbach et al. 2009). Considering the impact mercury can have 

on both humans and wildlife, addressing contaminant levels of mercury has been the focus of 

several studies in California.  

 Recently, the state of California’s Surface Water Ambient Monitoring Program 

Bioaccumulation Oversight Group (SWAMP-BOG) conducted a study examining fish-tissue 

mercury concentrations in various lakes and reservoirs. Out of 152 lakes sampled, 74% were 

above the state’s advisory tissue level (ATL) of 3 servings per week for mercury and 26% were 

above the no consumption range (>440 ppb; (Davis et al. 2009). However, it was unclear as to 

why some of these lakes had elevated levels of tissue mercury when past anthropogenic 

activities, such as mining did, not appear to be a factor.   

 Therefore, the objectives of our study were to (1) collect water methyl mercury data to 

adequately characterize the concentrations in a sub-set of lakes used in the SWAMP-BOG study, 

(2) collect ancillary parameter water data to help explain methyl mercury concentrations in water 

and fish, (3) develop correlations between the fish and mercury, and (4) calculate methyl 

mercury bioaccumulation factors (BAFs). Additional funding for the study was provided by the 
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Regional Water Quality Control Board (RWQCB) in Sacramento to supplement their ongoing 

Total Maximum Daily Load (TMDL) efforts. This study will also provide supplemental data to 

the Office of Environmental Health Hazard Assessment (OEHHA) for regulatory purposes to 

assist in developing fish consumption advisories . The use of the data allows OEHHA and 

RWQCB personnel to better address factors affecting methylation, suggest best management 

practices (BMPs), and implement control measures as necessary.  
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Methods 

 

Lake Selection 

  

  Lakes were chosen based on their relative mercury concentrations in fish-tissue, 

primarily largemouth bass (data provided by SFEI, taken from the SWAMP-BOG study), and 

accessibility. Additional consideration was made to include lakes that were part of an ongoing 

RWQCB-TMDL effort. The final study design included 28 lakes (Table 1). Twenty-two of these 

lakes were sampled bi-monthly or monthly depending on RWQCB-TMDL programs from 

August 2008 through October 2009 and some of these lakes had, within in them, multiple 

stations were water and sediment was collected (See Table 1). The additional six lakes (Bass, 

Britton, Butt Valley, Rollins, New Melones, and Paradise) were sampled just once in September 

2009, as part of RWQCB 5’s TMDL effort. These lakes had associated fish mercury data as well. 

  

Sample Collection  

 

 All water and sediment sampling was conducted by RWQCB and California Department 

of Fish and Game-Marine Pollution Studies Laboratory (CDFG-MPSL). A multi-parameter 

(probe)YSI 600 xL sonde measuring temperature, conductivity, pH, and oxygen was used to 

determine lake stratification prior to any water collections.  Probe measurements were taken in 3-

meter increments from the surface to near-bottom (50 ft. max in depth; RWQCB 3, 5, & 8) at all 

lakes and recorded. During the summer period, when most of the lakes were determined to be 

consistently stratified (Jun-Sept), water was collected in epilimnion (near surface) and 

hypolimnion (below thermocline; bottom) regions of each lake using a pre-cleaned (5% HCl) 
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Wildco Teflon Kemmerer sampler. During the winter period (Oct-Apr), when most of the lakes 

were determined to be well mixed, only a near surface sample was collected, with the exception 

of RWQCB 5 which sampled both near surface and bottom water throughout the study. All 

samples collected for  aqueous mercury (total and methyl) were collected unfiltered and using a 

clean hands dirty hands techniques (Mpsl-Dfg_Fieldsop_V1.0 2007). The purpose of this study 

design was to characterize unfiltered aqueous mercury concentrations on a temporal scale and to 

examine any effects stratification may have on the distribution of unfiltered mercury in the water 

column. 
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 Near surface water samples were analyzed for methyl mercury, Chlorophyll a, sulfates 

(SO4), and dissolved organic carbon (DOC) and deep water samples were only analyzed for 

methyl mercury. An additional water sample was collected for total mercury analysis on two 

separate sampling events (stratified and non-stratified lake type) coinciding with the regular 

sampling of lakes. One sediment sample was collected in the deepest depositional area of each 

lake using a Van Veen grab sampler (0.5 m2). All sediment samples were analyzed for total 

mercury and total organic carbon (TOC).  

 Big Bear Lake, Lake Englebright, Thermalito Forebay, and Lake Hemet had no 

largemouth bass mercury data so an additional effort was put forth to collect fish at these lakes. 

CDFG-MPSL staff, using a Smith-Root Electrofishing boat, put forth an effort to collect fish at 

each of these lakes. As a result, largemouth bass were collected at Lake Hemet and Big Bear 

Lake while spotted bass were collected at Lake Englebright. However, no fish were collected 

from Thermalito Forebay. 

 

Sample Custody  

 

 All samples were placed on ice or frozen and shipped overnight back to Moss Landing 

Marine Laboratories for analysis unless CDFG-MPSL personnel were able to drive them back to 

the laboratory. Standard two day hold times before acidification applied to all mercury water 

samples.  
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  The analytical and collecting techniques are identical to those used in current SWAMP 

programs. The investigators are involved in several SWAMP funded projects and quality 

assurance/quality control provisions of the study were identical to those in the SWAMP Quality 

Assurance Project Plan (QAPP). All protocols are available upon request.  

 All methyl mercury water samples were analyzed according to EPA 1630. They were 

distilled to separate methyl mercury from the water matrix (Horvat 1993). An ethylating agent 

was added to each sample to form a volatile methyl-ethyl mercury derivative, and then purged 

onto graphite carbon traps as a means of preconcentration and interference removal.  The sample 

was then isothermally chromatographed, pyrolitically broken down to elemental mercury, and 

detected using a cold vapor fluorescence detector.  Sample results are corrected for distillation 

efficiency.  

 Total mercury samples were analyzed using Modified EPA 1631, Revision E: Mercury in 

Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry (Usepa 

2002).   Sediment samples were prepared by cold aqua-regia digestion (MPSL-107) and analyzed 

using a Flow Injection Mercury System (FIMS; MPSL-103). TOC in sediments were measured 

as percent loss on ignition (LOI). 

 Tissue-mercury samples were analyzed by USEPA method 7473 for the SWAMP-BOG 

program.  Samples were dissected using standard clean procedures and analyzed on a Milestone 

Direct Mercury Analyzer (DMA-80).  Briefly, the method involves a drying step followed by 

combustion, purging, trapping on gold, desorbtion, and AA detection. All fish samples used in 

this study were analyzed as individuals.  

  

Statistical Analysis 

 Data were transformed to meet assumptions of statistical tests and all tests were 

performed using SPSS or SYSTAT software packages. Values that fell below detection limits 

were set to one half the reporting limit (R.L.). Anything less than 0.05 was considered to be 

statistically significant. 
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Bioaccumulation Factors  

 

 Methyl mercury BAFs were calculated for each lake using equation (1).  
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Ct = Total concentration of chemical in fish tissue. 

Cw= Total concentration of chemical in water. 

  

 All BAFs reported in this document were calculated using the above equation and are 

expressed in units of L•Kg-1.  BAF values were calculated using either the geometric mean or 

average of unfiltered aqueous methyl mercury concentrations (Sanborn 2006; USEPA 2003). 

Total mercury tissue concentrations were calculated using a length-tissue mercury regression and 

concentrations were normalized to 350 mm. 

  

Results 

 

 Mercury in study lakes 

 

 Average near surface methyl mercury concentrations varied from < RL (Expressed as ½ 

the RL, 0.010 ng•L-1) to 0.215 ng•L-1 and bottom methyl mercury varied from <RL to 0.351 

ng•L-1) among the stations in the study. Total mercury in sediments varied from <RL to 3.09 

μg•g-1 , the highest being found at the Lake Nacimiento Las Tablas station. This was not 

surprising considering an abandoned mercury mine (Klau/Buena Vista), a designated EPA 

superfund site , discharges directly into Las Tablas Creek, which flows into Nacimiento.   

Table 2 summarizes the average, over the study period, of samples collected at each station.  

 Average methyl mercury concentrations within each lake and normalized (350 mm) 

mercury tissue concentrations were used for the purpose of calculating BAFs (Table 3). 

Calculations were made using data from the entire study period. Average mercury concentration 
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in bass species varied considerably among lakes (91 – 1314 ng•g-1) as well as average methyl 

mercury concentrations (<RL – 0.158 ng•g-1).   

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

 Observed methyl mercury concentrations among study lakes varied more in stratified 

(summer) versus non-stratified (winter) regimes (Figure 1a).  A large portion of the variability 

had to do with the distribution of aqueous methyl mercury concentrations in the water column 

during lake stratification (Figure 1b). Most notably, Lake San Antonio and Lake Hemet average 

bottom concentrations were around two orders of magnitude higher than their average near 

surface water concentrations during summer months (0.708 and 0.368 versus 0.051and 0.020 

ng•L, respectively). However, largemouth bass tissue concentrations were among the lowest in 

the study for these two lakes (302 and 177 ppb) and below the no consumption limit of 440 ppb. 

Lake Pillsbury and Lake Nacimiento had the highest average near surface aqueous methyl 

mercury concentrations  during summer months (0.163 and 0.089 ng•L) and the highest 

largemouth bass tissue concentrations in the study (1,314 and 1,236 ppb). The discrepancy 

between near surface and bottom water in Pillsbury and Nacimiento was not as large as in Lake 

San Antonio and Hemet. Lake Pillsbury’s average near surface methyl mercury concentrations 

were only about one and a half times higher than the average bottom water concentrations (0.163 

and 0.121 ng•L) and roughly a 2-fold difference between near surface and bottom water in Lake 

Nacimiento (0.089 and 0.043 ng•L). 

 Additional water samples were collected from  Lake Nacimiento and Lake San Antonio 

in September 2009 to further profile the distribution of methyl mercury in the water column 

(Figure 2). The methyl mercury profile taken at Lake San Antonio was similar to the trend seen 

in the monthly summer collections: near surface concentrations were relatively low while bottom 

water concentrations were high. Lake Nacimiento however, had a rather large methyl mercury 

spike (3.73 ng•L-1) near the oxygen minimum. We examined six additional profiles (see methods 

for the list of lakes) to ascertain whether this mid-water methyl mercury phenomena occurred in 

other lakes as well. Unfortunately, these lakes had either de-stratified by the time samples were 

collected or the methylmercury concentrations were too low (within 3x R.L.) to adequately 

assess whether the same phenomena had occurred.  

 Total mercury in water was measured twice (1 summer /1 winter) at each study lake with 

the exception of Pillsbury, Nacimiento, and San Antonio where only one summer collection was 

made. Aqueous total mercury concentrations were similar to the pattern observed in the aqueous 
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methyl mercury data (Figure 1). Lake Nacimiento and Camp Far West were outliers among 

study lakes with respect to total mercury concentrations. Furthermore, Camp Far West had the 

third highest largemouth bass tissue concentrations in the study (843 ppb) behind Pillsbury and 

Nacimiento. 
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Ancillary measurements and correlations with fish tissue mercury 

  

 Variables measured in the study were examined using a Pearson correlation to ascertain 

which factors may potentially be important in driving bioaccumulation in largemouth bass 

(LMB) only. Averaged summer datasets were compared against averaged winter datasets to 

determine if there were any temporal trends among the mercury variables relative to LMB 

mercury concentrations (n = 17; Table 4).  

 Overall, total mercury in sediment had the highest correlation to LMB tissue mercury 

concentrations (r = 0.709; p < 0.01) and explained roughly 50% of the variability in LMB 

mercury concentrations (R2 = 0.503; p < 0.01; Figure 3). Averaged summer near surface methyl 

mercury concentrations were moderately correlated to LMB (r = 0.473; p = 0.055) while winter 

concentrations were weakly correlated at best(r = 0.235; p = 0.363). Total mercury 

concentrations were moderately correlated to LMB in the winter (r = 0.433; p = 0.094) and 

summer near surface/bottom concentrations weakly correlated (r < 0.400; p > 0.10).  

 Summer DOC, SO4, chl-a, and specific conductivity ancillary measurements had a 

significant and moderate correlation (negative ) with LMB mercury concentrations (r > -0.500; p 

< 0.05). The same results held true in the winter, with the exception of DOC, which had no 

significant correlation with largemouth bass during this period. All of these variables, regardless 

of summer or winter periods,  typically had a strong correlation among each other (r > 0.700; p < 

0.01).  

 Among the mercury variables, total mercury in sediments was the only variable that had a 

significantly negative correlation with both chl-a and SO4 (r = -0.547, -0.493 respectively; p < 

0.05) in the summer period and only with chl-a during the winter period. Near surface methyl 

mercury concentrations were moderately correlated with DOC (r = 0.533; p = 0.028) and pH (r = 

0.563; p = 0.563) in the winter period and had no significant correlations with any of the other 

ancillary measurements. 
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 We also examined the relationship between mercury in lakes and all bass species 

collected with respect to general areas of the state (Table 5). In general, Coast Range lakes 

(RWQBs 1and 3) were high in LMB, methyl, and total mercury in surface waters. Additionally 

these lakes were high in sediment total mercury and had a high degree of stratification. The 

Sierra Nevada Lakes (RWQB 5) were medium to high in LMB mercury (for the most part) and 

low to medium in the degree of stratification. The southern California lakes (RWQCB 8) were 

low in LMB mercury, low to medium in methyl and total mercury surface waters and variable in 

stratification. In general, mercury concentrations were highest in Coast Range lakes, medium in 

the Sierra’s, and lowest in southern California. However, there were exceptions in each, which 

illustrates the complexity of the lakes and supports the concept that there are multiple processes 

occurring at each lake that control the concentration of mercury in bass species. 
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Discussion 

 

Oxygen and stratification 

 Although there was no significant correlation between the degree of stratification and 

LMB mercury among all study lakes, there was however a significant correlation between the 

degree of stratification and LMB mercury concentration in the Sierra Nevada Lakes (r2= 0.68, p 

< 0.01; Figure 4). We are currently examining possible reasons attributed to why this only seen  

in the Sierra Nevada lakes. 

 Two of our study lakes, San Antonio and Hemet, had significant levels of hypolimnetic 

methyl mercury associated with low dissolved oxygen and six of the lakes had  > 65% change in 

oxygen concentrations between surface and bottom waters but little evidence of a buildup of 

hypolimnetic methyl mercury. Studies have shown methyl mercury formation in anoxic bottom 

water can be attributed to in situ processes and may not necessarily be controlled by source 

inputs (Eckley et al. 2005). Methyl mercury in fish has also been attributed to methyl mercury in 

bottom water in other areas such as Davis Creek Reservoir (Slotton et al. 1995) and lakes in the 

Guadalupe Watershed near San Jose California. Both San Antonio and Hemet had elevated 

surface methyl mercury concentrations in mid to late summer months when stratification was the 

greatest. This suggests that in situ processes may be controlling bottom water methyl mercury 
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concentrations in these lakes. However, at neither of these lakes were mercury tissue 

concentrations elevated.  
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Near surface water methyl and total mercury concentrations 

 

 There was a moderate correlation between methyl mercury in surface waters and LMB in 

the summer (r =0.47) and a lesser correlation between total mercury in surface waters and LMB 

in the summer and winter (r =0.36-0.43 respectively).  In the two study lakes that did have the 

highest tissue mercury concentrations , Pillsbury and Nacimiento, near surface methyl mercury 

concentrations were also the highest among lakes indicating in these two lakes epilimnetic 

methyl mercury may be causing high tissue levels. Others have found methyl mercury and total 

mercury in surface waters to be an important factor for influencing the bioaccumulation of 

mercury in fish (Wiener et al. 2006). 

 

Total mercury in sediments 

 

 Total mercury in sediments was correlated to LMB mercury (r =0 .71) and total mercury 

in surface waters in summer and winter periods (r  = 0.48-0.51).   Total mercury in sediments 

was used as a proxy for the presence of mercury in the watershed due to mining activities or 

natural deposits of cinnabar.  The total mercury in sediments was also correlated to methyl 

mercury in surface waters indicating the methyl mercury may be formed in the sediments and 

fluxed up into the surface waters or alternatively methyl and total mercury could be co-occurring 

in water brought into the lakes via tributaries.  To determine whether methyl mercury in water is 

coming from in place sediments or the tributaries is not possible with this data set and would 

need follow-up mass balance studies to make this assessment.  In one study at Folsom Reservoir, 

the Sacramento Regional Water Quality Control Board determined the methyl mercury 

concentrations could not be accounted for by tributary inputs alone and there must be some 

within lake production (Chris Foe, personal communication).  
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Conclusion   308 
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 The concentrations of mercury in LMB are correlated (for the most part) to methyl 

mercury and total mercury in surface waters, and total mercury in sediments.  In the Sierra 

Nevada Range the concentration of mercury in LMB was also correlated to degree of lake 

stratification.  There were four lakes that exhibited a high degree (>65%) of stratification and 

high levels of mercury in LMB and would be candidates for destratification using pumps or 

bubblers.  These include Lakes Pillsbury, Mendicino , Nacimiento, and Camp Far West. 

Destratification best management practices have been used successfully in lakes in the 

Guadalupe Watershed near San Jose California to lower the concentrations of mercury in fish.   

 The concentrations of mercury in LMB were also negatively correlated with chlorophyll 

a in surface waters indicating stimulating growth of phytoplankton may reduce mercury in fish.  

Chlorophyll a has been shown in other studies to be negatively correlated to LMB and  Clams in 

the Delta (Foe, personal communication).  Others have found algal blooms reduce the uptake of 

methyl mercury in freshwater food webs (Pickhardt et al., 2002). 

Both methyl mercury in surface waters and total mercury in sediment are correlated to mercury 

in LMB.  To determine whether control measures to reduce methyl mercury loadings to the lake 

by reducing inputs from the tributaries would be successful mass balance studies would be 

necessary to determine the relative amounts of methyl mercury coming from the tributaries and 

within lake sources. 
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RWQCB Lake Station Latitude Longitude
1 Sonoma Smith Creek 38.7398 -123.0722
1 Sonoma Dam 38.7205 -123.0205
1 Mendocino Dam 39.2009 -123.1754
3 Mendocino Russian River 39.2327 -123.1739
3 Pillsbury Dam 39.4229 -122.9547
5 Pillsbury Eel River 39.4126 -122.9242
5 Naciemento Dam 35.7629 -120.9030
5 Naciemento Las Tablas 35.7088 -120.9514
5 San Antonio Marina 35.8702 -121.0101
5 San Antonio Delta 35.8912 -121.0598
5 Lake Engelbright 39.2519 -121.2705
5 Thermalito Afterbay 39.4897 -121.6801
5 Thermalito Forebay 39.5169 -121.6204
5 Lake Oroville 39.5482 -121.4764
5 Folsom Lake 38.7199 -121.1466
5 Lake Natomas 38.6370 -121.2178
5 Don Pedro 37.7144 -120.3942
5 Lake McClure 37.5924 -120.2632
5 Lake McSwain 37.5187 -120.2992
5 San Luis Resrvoir 37.0609 -121.1024
5 Oneil Forebay 37.0814 -121.0526
5 Camp Far West 39.0339 -121.2831
8 Big Bear 34.2476 -116.9567
8 Irvine Dam 33.7824 -117.7247
8 Irvine Santiago Flats 33.7755 -117.7045
8 Perris Dam 33.8556 -117.1815
8 Perris Allesandro 33.8648 -117.1714
8 Hemet 33.6648 -116.7036
8 Elsinore 33.6562 -117.3518

Additional Lakes sampled one time in September 2009
5 Bass Lake* 37.3139 -119.5474
5 Lake Britton* 41.0276 -121.6426
5 Butt Valley Reservoir* 40.1459 -121.1739
5 Rollins Reservoir* 39.1529 -120.9374
5 New Melones* 37.9917 -120.5337
5 Paradise Lake* 39.8555 -121.5748

Table 1. Study Lakes by Water Quality Control Board (RWQCB). 
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RWQCB Lake Station
Chlo
(mg

rophyl‐a 
/L) DOC (mg/L) SO4 (mg/L)

Epilimnio
MeHg (n

n 
g/L)

Hypo
MeHg

limnion 
 (ng/L)

THg in water 
(ng/L)

THg in sediment 
(Dry, ug/g)

1 Sonoma Smith Creek 1.36 9.03 7.39 0.033 0.040 0.920 0.171
1 Sonoma Dam 0.82 9.81 7.39 0.032 0.035 1.666 0.254
1 Mendocino Dam 1.79 10.14 8.13 0.052 0.049 1.213 0.100
1 Mendocino Russian River 2.02 8.88 8.14 0.047 0.043 1.231 0.045
1 Pillsbury 1.92 11.60 5.85 0.158 0.135 1.032 0.195
3 Naciemento Dam 1.66 8.27 38.29 0.043 0.116 1.012 0.048
3 Naciemento Las Tablas 5.41 12.85 40.57 0.215 NA 14.708 3.090
3 San Antonio Marina 7.02 18.97 67.43 0.045 0.351 0.971 0.067
3 San Antonio Delta 13.86 17.15 68.29 0.046 NA 1.342 0.076
5 Lake Engelbright 0.44 1.92 4.45 0.042 0.045 0.850 0.214
5 Thermalito Afte ayrb 1.38 2.03 3.90 0.025 NA 0.683 0.012
5 Thermalito Fo ayreb 1.80 1.93 3.75 0.022 0.010 0.792 0.051
5 Lake Oroville 1.58 1.91 3.85 <RL 0.026 0.506 0.066
5 Folsom Lake 1.17 2.02 3.00 0.043 0.034 0.644 0.126
5 Lake Natomas 1.18 1.94 3.03 0.033 0.035 0.919 0.055
5 Don Pedro 0.91 1.47 2.10 0.032 0.026 0.266 0.128
5 Lake McClure 1.33 1.77 3.00 0.041 0.025 0.354 0.081
5 Lake McSwain 1.63 2.08 2.72 0.033 0.029 1.552 0.115
5 San Luis Resrvoir 6.01 11.66 43.17 0.043 0.032 0.442 0.071
5 Oneil Forebay 1.98 8.62 47.80 0.043 0.042 0.803 0.105
5 Camp Far WestCamp Far West 2.042.04 3.973.97 7.857.85 0.0.067067 0.069 2.580 0.5990.069 2.580 0.599
5 Bass Lake* NC NC NC <RL <RL NC <RL
5 Lake Britton* NC NC NC <RL <RL NC 0.030
5 Butt Valley Rese oirv r* NC NC NC <RL <RL NC 0.120
5 Rollins Reservoir* NC NC NC 0.042 0.037 NC 0.804
5 New Melones* NC NC NC <RL <RL NC 0.098
5 Paradise Lake* NC NC NC <RL <RL NC 0.147
8 Big Bear 3.80 13.73 20.83 0.032 <RL 0.432 0.066
8 Irvine Dam 5.79 44.66 235.00 0.090 0.322 0.767 0.192
8 Irvine Santiago Flats 5.87 45.14 229.00 0.141 0.166 1.671 0.186
8 Perris Dam 5.06 14.22 51.67 0.039 0.031 0.234 0.061
8 Perris Allesandro 5.58 14.25 52.67 0.036 NC 0.272 0.045
8 Hemet 4.87 10.89 15.80 0.030 0.196 0.278 0.037
8 Elsinore 42.64 65.35 220.00 0.042 0.076 1.098 0.029

Table 2. Average of anlytes collected at each study station. *Sampled only once. NC = No Collection and  <RL = below reporting limit.
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1 Sonoma** Largemouth Bass 677 0.030  ± 0.014 0.027 2.25 x 107 2.55 x 107

1 Mendocino** Largemouth Bass 543 0.032 ± 0.025 0.023 1.71 x 107 2.33 x 107

1 Pillsbury** Largemouth Bass 1314 0.158 ± 0.072 0.143 8.31 x 106 9.21 x 106

3 Naciemento** Smallmouth Bass 1236 0.120 ± 0.099 0.079 1.03 x 107 1.57 x 107

3 San Antonio** Largemouth Bass 302 0.146 ± 0.267 0.058 2.07 x 106 5.23 x 106

5 Camp Far West Spotted Bass 843 0.068 ± 0.009 0.067 1.25 x 107 1.26 x 107

5 Lake Engelbright Spotted Bass 521 0.036 ± 0.021 0.029 1.45 x 107 1.82 x 107

5 Thermalito Afterbay Largemouth Bass 211 0.010 ± 0.009 0.010 1.22 x 107 1.35 x 107

5 Thermalito Forebay -- NC 0.010 ± 0.005 0.010
5 Lake Oroville Smallmouth Bass 513 0.010 ± 0.005 0.010 4.53 x 107 4.74 x 107

5 Folsom Lake Largemouth Bass 471 0.036 ± 0.024 0.031 1.3 x 107 1.53 x 107

5 Lake Natomas Largemouth Bass 542 0.024 ± 0.013 0.020 2.27 x 107 2.7 x 107

5 Don Pedro Reservoir Largemouth Bass 442 0.010 ± 0.008 0.010 3.36 x 107 3.7 x 107

5 Lake McClure Largemouth Bass 769 0.023 ± 0.014 0.010 3.31 x 107 5.9 x 107

5 Lake McSwain Largemouth Bass 535 0.025 ± 0.010 0.025 2.1 x 107 2.12 x 107

5 San Luis Resrvoir Largemouth Bass 564 0.030 ± 0.016 0.026 1.87 x 107 2.2 x 107

5 Oneil Forebay Largemouth Bass 234 0.040 ± 0.015 0.036 5.91 x 106 6.54 x 106

5 Bass Lake* Largemouth Bass 91 0.021 0.010 4.46 x 106 5.75 x 106

5 Lake Britton* Smallmouth Bass 248 0.010 0.010 2.48 x 107 2.48 x 107

5 Butt Valley Reservoir* Smallmouth Bass 180 0.010 0.010 1.8 x 107 1.8 x 107

5 Rollins Reservoir* Smallmouth Bass 762 0.039 0.038 1.96 x 107 2.01 x 107

5 New Melones* Largemouth Bass 1125 0.010 0.010 7.6 x 107 8.81 x 107

5 Paradise Lake* Largemouth Bass 161 0.010 0.010 1.61 x 107 1.61 x 107

8 Big Bear Largemouth Bass 178 0.010 ± 0.012 0.010 9.2 x 106 1.09 x 107

8 Irvine** Largemouth Bass 479 0.161 ± 0.162 0.115 2.98 x 106 4.18 x 106

8 Perris** Largemouth Bass 98 0.023 ± 0.015 0.010 4.25 x 106 5.19 x 106

8 Hemet Largemouth Bass 166 0.087 ± 0.202 0.032 1.91 x 106 5.18 x 106

8 Elsinore Largemouth Bass 121 0.054 ± 0.035 0.047 2.23 x 106 2.56 x 106

Table 3. *Lakes were sampled once in September 2009 as part of RWQCB 5's TMDL program. ** Multiple stations within lake sampled
(NC= No calculation)  No fish were collected at Thermalito Forebay. Values below the reporting limit (RL) were set to 1/2 the RL (0.010 ng/L). Data presented here  
are lake-wide averages of methylmercury in water (Value ± S.D.). Tissue tissue mercury values are normalized (350 mm) and represent the lake-wide average. 
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Tissue 1
AVG_T 0.18528 1
AVG_O2 0.06041 -0.39525 1
AVG_pH -0.36265 0.09405 -0.25662 1
AVG_spC -0.61586 0.23645 -0.37226 0.78898 1
Chl-a -0.61251 0.27231 -0.4296 0.47082 0.81025 1
DOC -0.53898 0.34632 -0.45328 0.79274 0.97301 0.83751 1
SO4 -0.69512 0.15617 -0.38392 0.67829 0.96627 0.89434 0.94588 1
THg_tw 0.36848 0.09893 -0.49394 0.23302 0.11339 0.08815 0.23553 0.0962 1
TMMHg_tw 0.47314 0.39861 -0.31803 0.25632 0.12485 -0.02341 0.18591 0.02414 0.58108 1
THg_Bw 0.36526 -0.33559 -0.2199 -0.04951 -0.122 -0.09084 -0.10915 -0.11006 0.62041 0.38467 1
TMMHg_bw -0.02954 0.30264 -0.32969 0.28866 0.33369 0.38897 0.4299 0.37585 0.33498 0.52807 0.22737 1
THg_s 0.70944 -0.14146 0.0953 -0.30631 -0.46092 -0.54687 -0.415 -0.49307 0.48343 0.42004 0.61269 0.01337 1
TOC% -0.43652 -0.32276 0.15484 0.02693 0.29186 0.36856 0.18224 0.35519 -0.24156 -0.36333 0.1654 -0.05446 -0.07641 1
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Tissue 1
AVG_T 0.19466 1
AVG_O2 0.01918 -0.53182 1
AVG_pH -0.36265 0.05279 -0.25427 1
AVG_spC -0.62083 0.16736 -0.22832 0.7961 1
Chl-a -0.60778 0.24611 -0.21666 0.66613 0.85019 1
DOC -0.31898 0.18126 -0.63398 0.78951 0.74344 0.67287 1
SO4 -0.56732 0.23578 -0.2041 0.66279 0.95235 0.8269 0.67147 1
THg 0.43282 -0.1706 0.46104 -0.13293 -0.22685 -0.12763 -0.12397 -0.17853 1
TMMHg 0.23537 0.27531 -0.16781 0.563 0.39568 0.44563 0.53257 0.37381 0.30731 1
THg_s 0.70944 -0.13096 0.21929 -0.30631 -0.45621 -0.52197 -0.23493 -0.36488 0.51263 0.31606 1
TOC% -0.43652 -0.33809 -0.09741 0.02693 0.26883 0.23883 0.23352 0.18961 -0.30104 -0.07813 -0.07641 1

Table 4. (a)Correlation matrix of summer variables (r). (b)Winter variables. Values highlighetd in bold are significant (p<0.05; LMB only)





RWQCB StatName 
Avg-LMB

(normalized -
 Hg 
350mm)

Avg-Me
su

Hg_(Near 
rface) AVG THg in water THg Sediment ΔO2-summer

1 Lake Mendocino
1 Lake Pillsbury
1 Lake Sonoma
3 Lake Nacimento
3 Lake San Antonio
5 Camp far West
5 Lake McClure
5 San Luis Reservoir
5 Folsom Lake
5 Lake McSwain
5 Oneil Forebay
5 Don Pedro Reservior
5 Lake Natomas
5 Lake Oroville
5 Thermalito Afterbay
5 Lake Engelbright
8 Lake Elsinore
8 Perris Reservoir
8 Lake Hemet
8 Big Bear Lake

Table 2. The table is sorted ascending on RWQCB. Darker shades represent higher average concentrations during the summer period relative to the rest of the study lakes.
ΔO2 represents a percent change over time of the oxycline. In general, the longer a lake maintains an oxycline, coupled with the difference between O2 max and min,
the greater the percent change. General areas of lakes: RWQCB 1 = Coast Range, RWQCB 5 = Sierra Nevada, RWQCB 8 = Southern California
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