Sampling Design for a Statewide Survey of Contaminants in Sport Fish in California Rivers and Streams

The Bioaccumulation Oversight Group

Products and Timeline

- BOG planning discussions November-January
- Draft Sampling Plan and QAPP January
- Peer Review Panel meeting February
- Finalize Sampling Plan and QAPP End of February
- Begin sampling End of February
- Year 1 data available May 2012
- Draft report on year 1 January 2013
- Final report on year 1 May 2013

SWAMP/BOG Monitoring Objectives

- 1. Status
- 2. Trends
- 3. Sources and Pathways
- 4. Effectiveness of Management Actions

Over the long-term, primary BOG emphasis on 1 and 2; 3 and 4 are secondary

In the near-term, emphasis on 1 (Status)

Beneficial Uses

- 1. Fishing
- 2. Aquatic Life

Over the long-term, the Program will evaluate the impacts of bioaccumulation on both, with an emphasis on 1

In the near-term, emphasis on 1 - Aquatic Life NOT INCLUDED

Toolbox of Bioaccumulation Indicators

- Sport fish
- Prey fish
- Birds
- Mammals
- Bivalves

Benefits of This Survey

- Consistent statewide assessment of all water body types
 - Building an overall summary report as we go
- Rivers and streams part of long-term survey cycle
- Fuller array of analytes than recent work in rivers and streams

Significant Prior Work

- TSMP
- Fish Mercury Project
- Region 5 Studies
 - Mercury
 - Organics
- Sacramento River Watershed Program
- UC Davis
- USGS Alpers et al, Valley work
- USEPA National Rivers and Streams Assessment

Management Questions For This Screening Study

Status of the Fishing Beneficial Use

 For popular fish species, what percentage of popular fishing locations have low enough concentrations that fish can be safely consumed?

Need for Further Sampling

 Should additional sampling of bioaccumulation in sport fish (e.g., more species or larger sample size) at a location be conducted for the purpose of developing comprehensive consumption guidelines?

Audience and Information Products

- Policy makers Fact Sheet, Press Release
- Water quality managers Summary Report
- The fishing public Press Release, Safe to Eat Portal

Design Basics

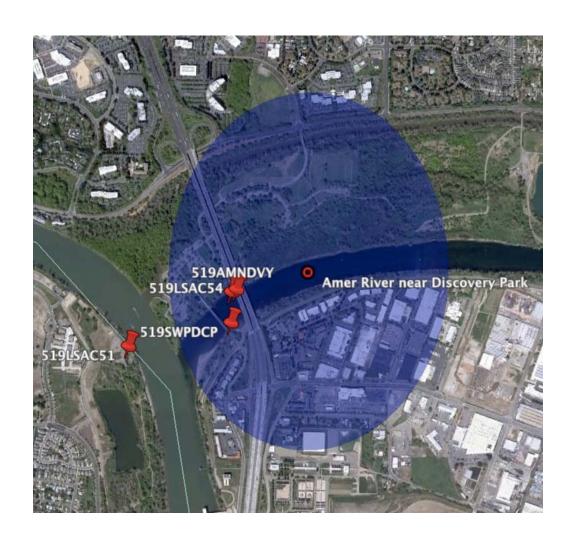
- Target species of toxicological concern: humans that consume fish
- Population of spatial units: fishing locations
- Species of interest
 - Fish species that are:
 - Popular
 - Widely distributed
 - Good indicators

Coordination and Partnerships

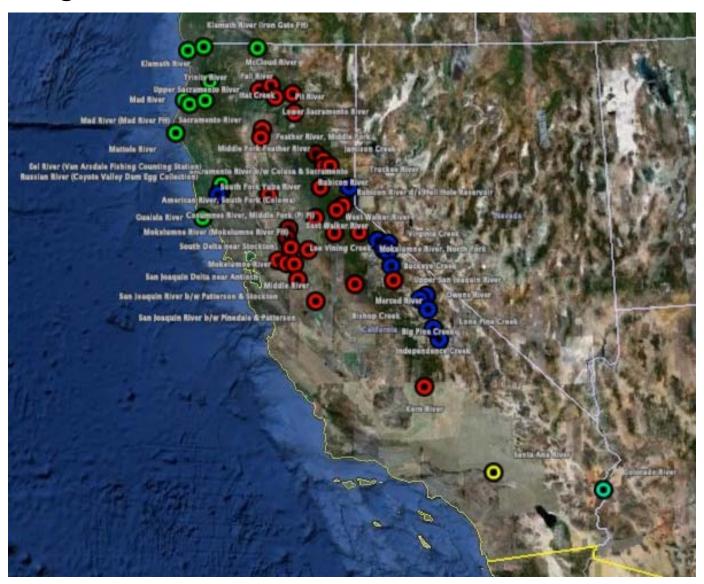
Coordinated Efforts

- Are there any other studies happening that we should coordinate with?
- Check into:
 - Alpers work in the Sierra
 - The Sierra Fund
 - Region 5

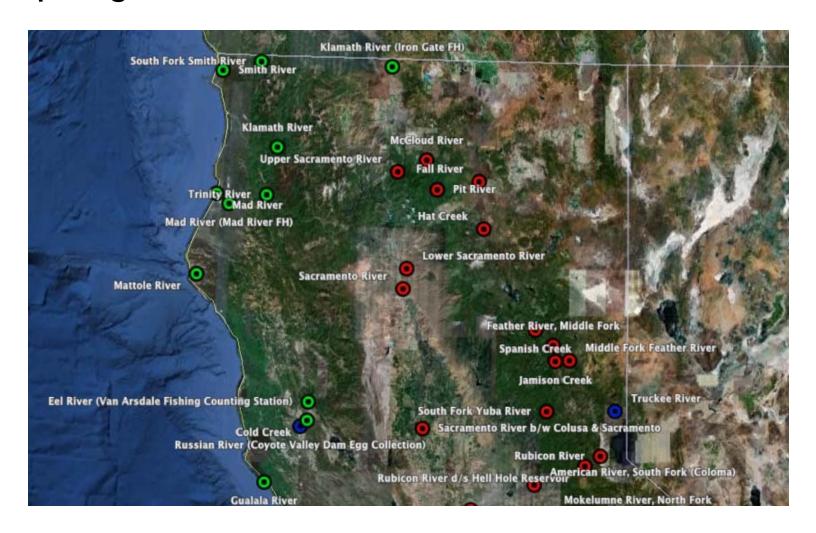
Partners


- Some limited Regional Board partnering
- Check with fishing groups

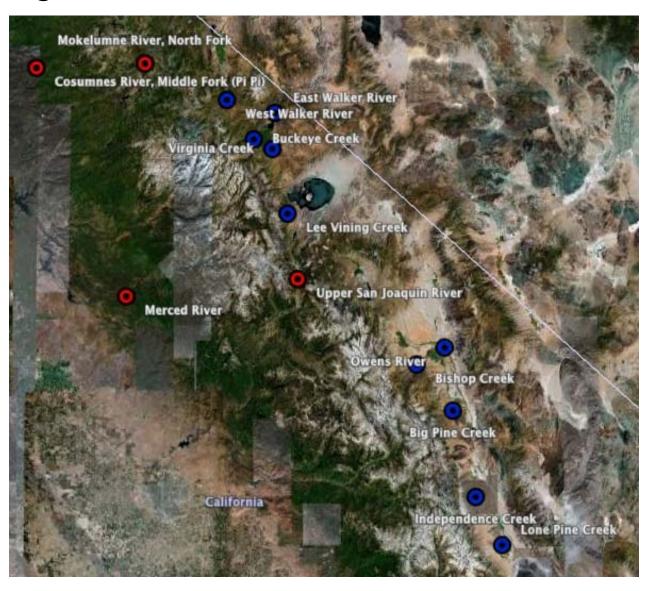
Strategy for Phasing


- One year
- No phasing needed

Spatial Units: Fishing Locations


- Similar to locations used in lakes
- Up to 1 mile length
- Considerations for selection
 - Coverage of popular locations for sport fish consumption
 - Stakeholder (Regional Board) interest

Sampling Locations: Statewide


Sampling Locations: North

Sampling Locations: Delta Region

Sampling Locations: Sierra Nevada

Sampling Locations: South

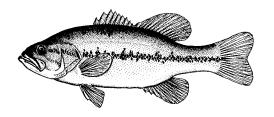
Locations

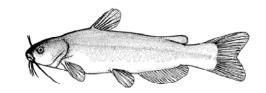
See Gary's spreadsheet for latest list

Questions

- How far to go with coverage of streams?
 - A: hit popular locations as defined by Stienstra and Regional Boards

Design Within Each Location


- Replication to support 303(d) listing?
 - No
- Sampling design with a follow-up strategy to conserve budget?
 - No


Target Species

- Fish species that are (in order of priority):
 - 1. Popular for consumption
 - Sensitive indicators of problems "bad boys" for the different pollutants of concern - helps with evaluating safe consumption
 - 3. Widely distributed spatial coverage and patterns
 - 4. Represent different exposure pathways (benthic vs pelagic)
 - 5. Continuity with past sampling

Target Species

- Primary Targets
 - Where appropriate, two indicator species per location
 - Mercury indicator: e.g., largemouth
 - Organics indicator: high lipid benthic species
 - Most locations will only have trout sample one species at these locations
- Secondary Targets
 - In case primary targets are not found
- Vary by region
- Bycatch

Target Species

	Foraging Type		Trophic	Distribution			
			Level				
Species	Water	Bottom		Low	Low	High	Good
	column	feeder		Eleva-	Sierra	Sierra	Candidate
				tion			
Largemouth bass	X		4	\mathbf{X}	X		Α
Smallmouth bass	X		4	X	X		A
Spotted bass	X		4		X		A
Sacramento Pikeminnow	X			X	X		В
White catfish		X		X	X		Α
Brown bullhead		X	S 3	X			В
Channel catfish		$X \sim V$	3 <u>8 3</u> 4	X	X		Α
Carp		W ON	3	X	X		Α
Sacramento sucker			3	X	X		В
Tilapia	(X	3				В
Bluegill	X		3	X	X		В
Green sunfish	X^{\vee}		3	X	X		В
Crappie	X		3/4	X	X		В
Redear sunfish	X		3	X	X		В
Rainbow trout	X		3/4	X	X	X	Α
Brown trout	X		3		X	X	A
Brook trout	X		3			X	A
Kokanee	X		3	?	X	X	В

Target Size Ranges and Compositing for Each Species

- Composite to stretch dollars
- Use 75% rule
- Target middle of distribution that is caught and consumed
- Need to determine ranges
- Numbers in composites
 - Generally 5

Questions

- How to handle hatchery vs resident fish?
 - A: try to get residents or less recent releases
 - Pick sites away from hatchery release points - note proximity to release point for each site
 - Size?
 - Rounded fins?
 - ? Note this in the field

Sample Processing and Analysis

- Ancillary data
 - Total length, fork length
 - Hatchery vs resident
 - Location coordinates
 - Field observations: bycatch, others?
- Skin-off fillets

Analytes in Tissue

- Mercury: generally composites, some individuals
- PCBs: sum of 55 congeners, skip Aroclors, no coplanars
- DDTs: sum of six isomers
- Dieldrin
- Chlordanes: sum of 5 compounds

Analytes in Tissue (continued)

- PBDEs no
- Selenium yes
- PFCs no
- Dioxins no
- Omega 3 no
- Others?
- Ancillary parameters: lipid, moisture

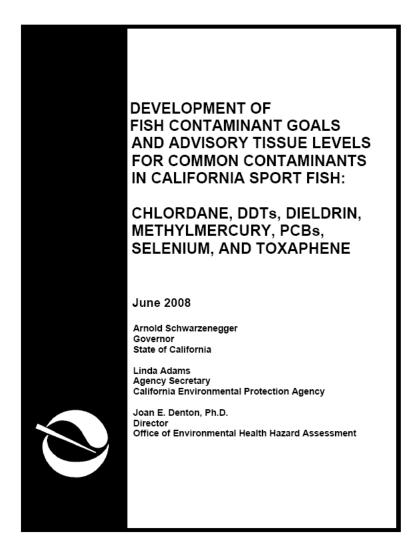
Ancillary water or sediment quality data?

Will explore collaboration with Charlie Alpers' study

Archiving

- Tiered approach
 - Long-term archives
 - Short-term archives

Sampling Methods


- E-boat
- Backpack shocker
- Gill nets
- Hook and line

QA

QAPP

Assessment Thresholds

- Advisory Tissue Levels
- FCGs
- State Board Mercury Objective?

			\$409,275
NIST Archive storage fees (based on 110 samples)			\$0
Scale analysis - on all black bass (based on 5-10 individuals)	\$85	10	\$850
Selenium (Se) - <i>tissue</i>	\$150	71	\$10,650
Mercury (Hg) - <i>tissue</i> composites	\$66	62	\$4,092
Mercury (Hg) - <i>tissue</i> individuals (dissection and analysis)	\$60	100	\$6,000
Other compounds of interest: Pyrethroids, Pharmaceuticals, Nonylphenol, Nonylphenol ethoxylates	\$0	0	\$0
Microcystin	\$436	2	\$872
Polybrominated Diphenyl Ethers (PBDEs) - <i>tissue</i>	\$584	0	\$0
Polychlorinated Biphenyls (PCB Congeners; EPA 8082M) - <i>tissue</i>	\$544	62	\$33,728
Organochlorine Pesticides (OCH; 8081M) - <i>tissue</i>	\$584	62	\$36,208
NIST Archive - assume1 jar per archive (MPSL-DFG)	\$17	0	\$0
Archive - assume1 jar per archive (MPSL-DFG)	\$5	175	\$875
Fish Composite Preparation - includes 1 jar per composite created (MPSL-DFG)	\$100	35	\$3,500
Archive - assume 1 jar per archive (DFG-WPCL)	\$5	180	\$900
duties, etc. Fish Composite Preparation - includes 1 jar per composite created (DFG-WPCL)	\$100	36	\$3,600
Collect 2 species per location as defined by the Statewide Bioaccumulation program. Sample collection costs not only include field time/costs, but also field data entry&QA, pre-trip preparation, post-trip	\$5,500	56	\$308,000

Hatchery Collections \$500 6 \$3,000 R&S Design 11-09-10