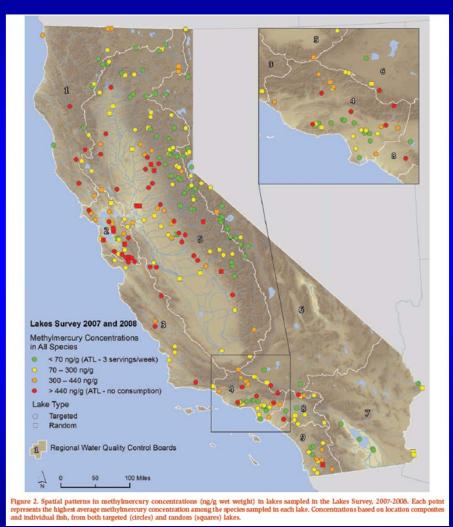
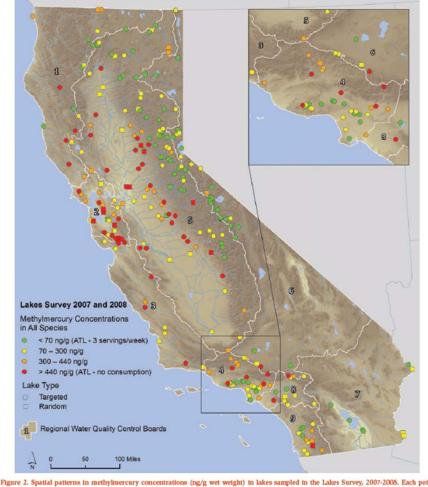

Incorporating Wildlife Mercury Exposure and Risk Estimates using Biomagnification Factors into BOG California Lake Monitoring


Josh Ackerman¹, Collin Eagles-Smith², Alex Hartman¹, Tom Maurer³, and Mark Stephenson⁴ ¹U.S. Geological Survey, Western Ecological Research Center, Davis Field Station, University of California-Davis, California

²U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon
³U.S. Fish and Wildlife Service, Environmental Contaminants Program, Sacramento, California
⁴California Department of Fish and Game Moss Landing Marine Lab, Santa Cruz, California
(February 9, 2012)

Bioaccumulation Oversight Group (BOG) for Surface Water Ambient Monitoring Program (SWAMP)

- Completed state-wide survey of contaminants in sport fish tissue from >250 lakes in California
- Focus on sport fish and human health
- Found widespread mercury contamination in lakes throughout California
- BOG data guiding TMDL implementation and criteria development to protect human health



Davis, J.A., A.R. Melwani, S.N. Bezalel, J.A. Hunt, G. Ichikawa, A. Bonnema, W.A. Heim, D. Crane, S. Swenson, C. Lamerdin, and M. Stephenson. 2010. Contaminants in Fish from California Lakes and Reservoirs, 2007-2008: Summary Report on a Two-Year Screening Survey. A Report of the Surface Water Ambient Monitoring Program (SWAMP). California State Water Resources Control Board, Sacramento, CA.

Bioaccumulation Oversight Group (BOG) for Surface Water Ambient Monitoring Program (SWAMP)

- Yet risk to wildlife is not incorporated
- Wildlife considered a "beneficial use" in California lakes
- Will TMDL criteria for human health be protective of wildlife as well?
- How do we determine wildlife exposure across such a wide spatial extent?
- Logistically more difficult to sample wildlife than fish

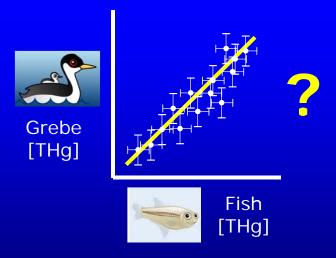
represents the highest average methylmercury concentration among the species sampled in each lake. Concentrations based on location composites and individual fish, from both targeted (circles) and random (squares) lakes.

Davis, J.A., A.R. Melwani, S.N. Bezalel, J.A. Hunt, G. Ichikawa, A. Bonnema, W.A. Heim, D. Crane, S. Swenson, C. Lamerdin, and M. Stephenson. 2010. Contaminants in Fish from California Lakes and Reservoirs, 2007-2008: Summary Report on a Two-Year Screening Survey. A Report of the Surface Water Ambient Monitoring Program (SWAMP). California State Water Resources Control Board, Sacramento, CA.

The Biomagnification Factor Approach

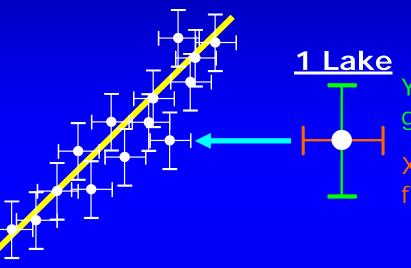
- Biomagnification factors can be used to estimate wildlife exposure from more easily sampled animals, like fish
- Biomagnification factors (BMF) will be calculated for each lake using the following formula:

$$mean [THg] grebe blood \frac{\mu g}{g} ww$$


 $\frac{1}{mean} [THg] whole prey fish \frac{\mu g}{g} ww$

Key Objective

- Assess the applicability of the Biomagnification Factor approach to predicting wildlife exposure across CA lakes
- Is Hg exposure in grebes highly correlated with Hg concentrations in prey fish across the State?



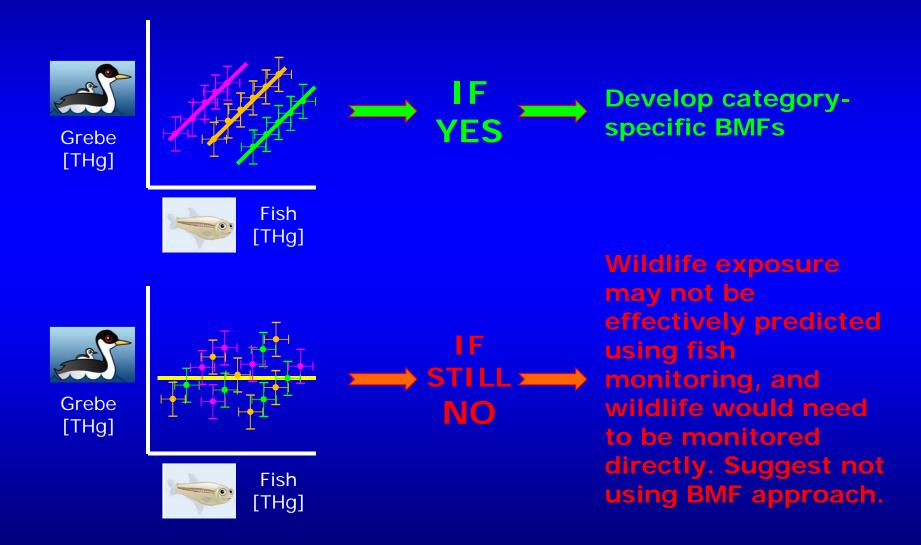
Sample Sizes per Lake

Grebe Blood/Egg [THg] µg/g ww

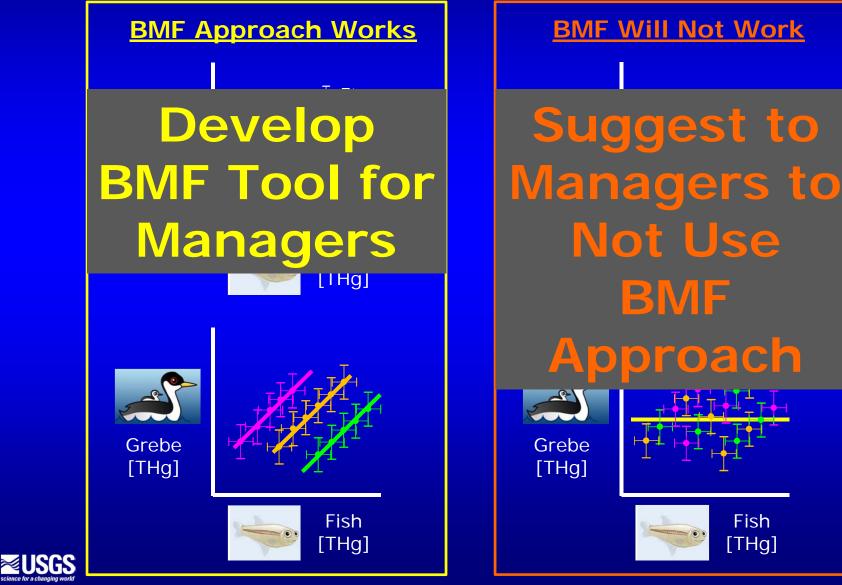
Y=Mean±SE of 20 grebe tissues

X=Mean±SE of 20 fish from 2 species

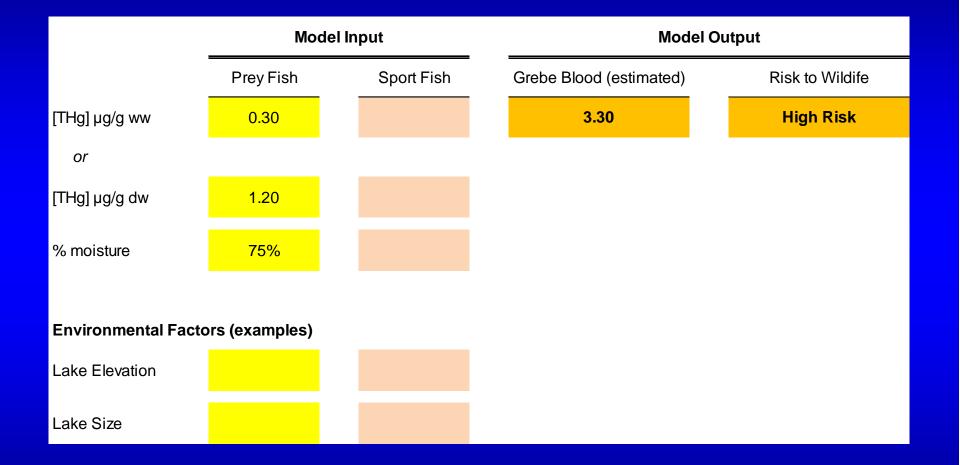
Whole Fish [THg] µg/g ww



Key Objective Is grebe Hg correlated with prey fish Hg?



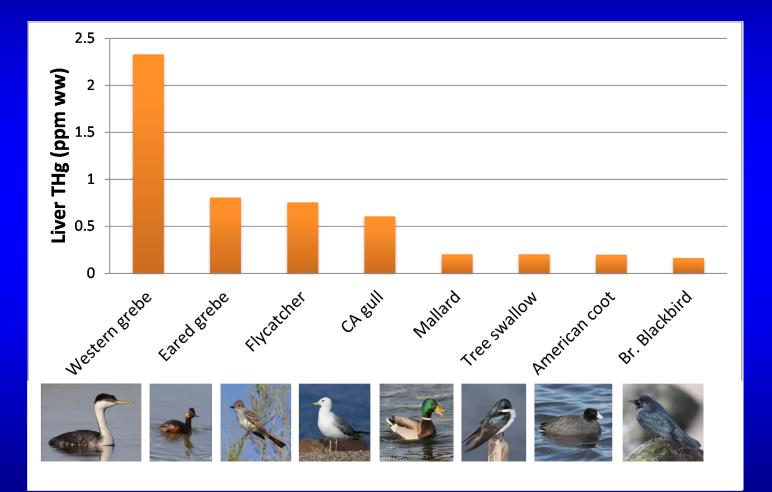
Key Objective Is grebe Hg correlated with prey fish Hg?



Key Objective Is grebe Hg correlated with prey fish Hg?

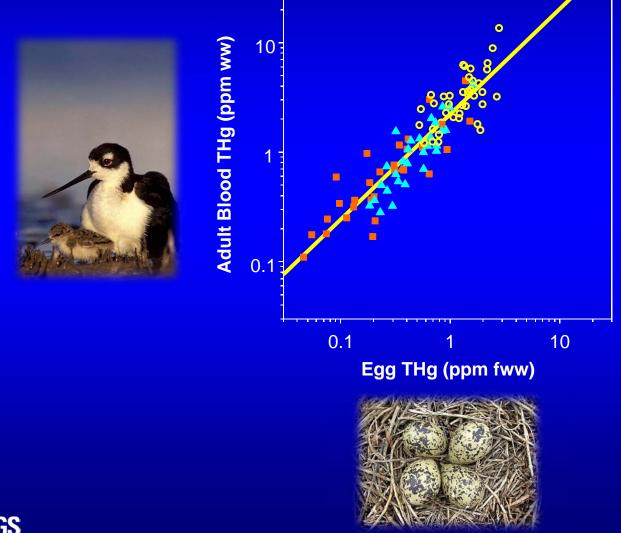
Biomagnification Factor Tool for Managers

BMF assumed to be 11 in this example


Western Grebes as Wildlife Biosentinel for Lakes

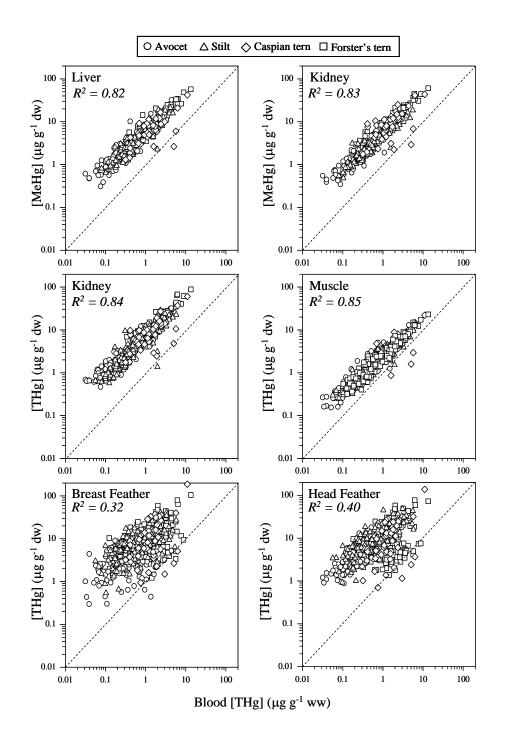
- Eat fish (25-100 mm), among wildlife at the top of the food chain
- Widely distributed on California lakes
- Breed on many California lakes
- Become flightless at breeding locations, contaminant exposure will be localized
- Species of conservation concern

Grebes Have High Mercury Exposure in Lakes (Eagle Lake, CA)



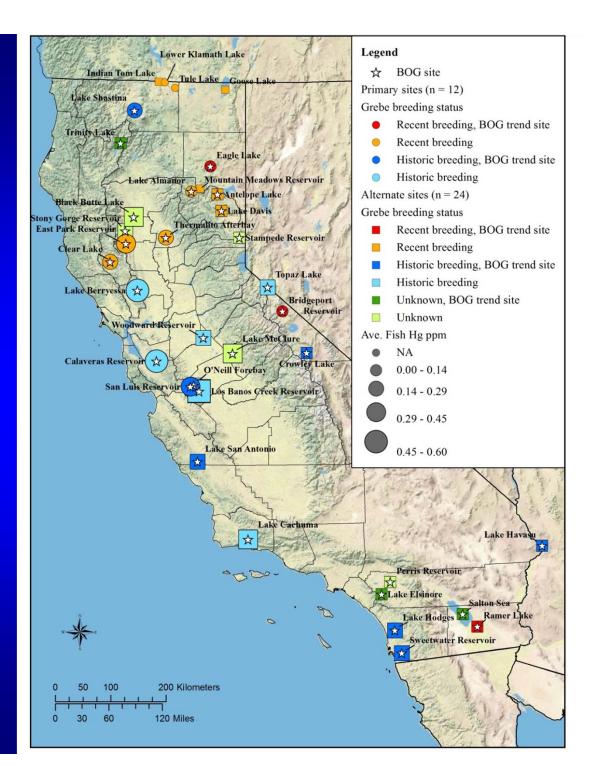
2.9 ppm ww (8.5 ppm dw) demethylation threshold

Eagles-Smith et al., unpublished data


Adult Blood will be Sampled to Index Wildlife Risk

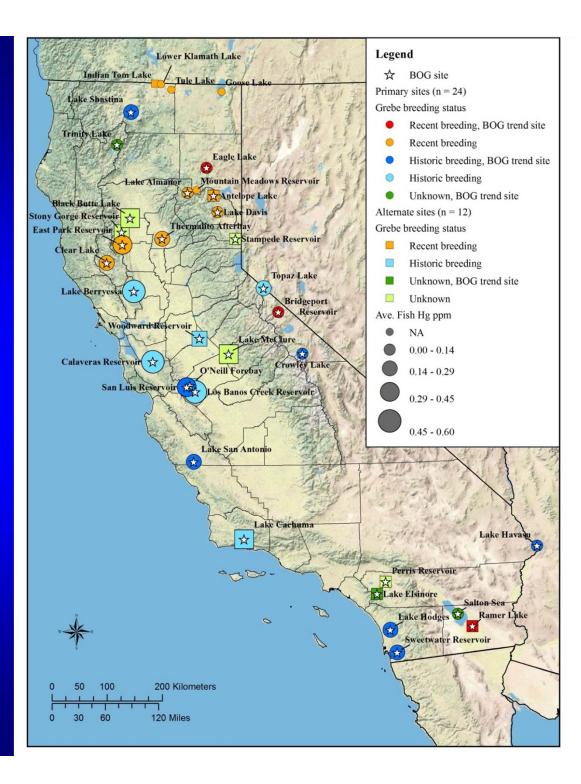
P<0.0001 *R*²=0.83 *N*=99 clutches & parents

- O Terns
- ▲ Stilts
- Avocets


blood is a good index for internal tissue THg and MeHg concentrations in birds

Lake Selection Based On:

- Prior BOG sampling
- Whether or not the lake was a potential longterm BOG sampling site
- Whether grebes breed on the lake
- Relative mercury concentrations in sport fish sampled by BOG in 2007-2011



Option 1: 12 lakes during 1 field season in 2012

Option 2: 24 lakes during 2 field seasons in 2012 and 2013

Project Leads

- Bird sampling, Hg determination, and bird reporting:
 - PIs: Dr. Josh Ackerman (USGS-WERC) and Dr. Collin Eagles-Smith (USGS-FRESC)
 - Lead Field Coordinator: Dr. Alex Hartman (USGS-WERC)
- Fish sampling, Hg determination, and fish reporting:
 - PIs: Mark Stephenson (Moss Landing) and Tom Maurer (USFWS)
 - Lead Field Coordinator: Gary Ichikawa (Moss Landing)
- Bird sampling will be conducted immediately before fish sampling, with fish sampling <2 weeks of bird sampling

Project Permits and Coordination

• Permits submitted:

- Federal Migratory Bird Permit
- Federal Bird Banding Laboratory
- California Scientific Collection Permit
- Nevada Scientific Collection Permit

• Local Coordination (to date):

- Keiller Kyle, Audubon (Audubon's California nest monitoring: Eagle Lake, Lake Almanor, Clear Lake, Thermalito Afterbay)
- David Arsenault, Audubon-Plumas Chapter (Eagle Lake & Lake Almanor)
- Ryan Martin, Department of Water Resources (Thermalito Afterbay)
- Dr. Dan Anderson, University of California-Davis (California grebe experts)
- Kris Robinson, University of California-Davis (MS Thesis on grebes)
- Renee Weems, University of California-Davis (MS Thesis on grebes)
- Randi Logsdon, SCP coordinator, California Department of Fish and Game
- Steve Hampton, Office of Spill Prevention and Response, California Department of Fish and Game
- Jennifer Brown, Federal Migratory Bird Permit Specialist, USFWS
- Jenni Jeffers, Nevada Department of Wildlife (Topaz Lake)

Proposal Option 1: 12 lakes during 1 field season in 2012

The total cost to complete the 1-year project is \$299k, which includes added reporting costs in year-1 to that of the 2-year proposal option below. Funds will be spread over 2 calendar years in 2012 and 2013. Additionally, a match of approximately \$95k is provided by USGS, USFWS, and MLML to support project development, implementation, and interpretation. Salary rates include benefits.

1-YEAR PROJECT BUDGET

		Year-1		Year-2		Total		In-Kind Total	
Salary and Benefits									
Wildlife exposure determination	\$	70,381	\$	-	\$	70,381	\$	38,374	
Fish sampling	\$	43,252	\$	-	\$	43,252	\$	5,000	
Sample Processing and Mercury Determination									
Grebe tissue	\$	24,000	\$	-	\$	24,000	\$	-	
Fish tissue	\$	24,000	\$	-	\$	24,000	\$	-	
Supplies									
Field supplies, boat gas, equipment and maintenance	\$	13,500	\$	-	\$	13,500	\$	17,250	
Lab supplies & equipment	\$	2,000	\$	-	\$	2,000	\$	2,000	
Travel									
Per diem	\$	14,220	\$	-	\$	14,220	\$	-	
Lodging	\$	10,890	\$	-	\$	10,890	\$	-	
Vehicles	\$	9,000	\$	-	\$	9,000	\$	1,000	
Total Direct Costs	\$	211,243	\$	-	\$	211,243	\$	63,624	
Indirect Costs	\$	88,319	\$	-	\$	88,319	\$	31,468	
Total Costs	\$	299,563	\$		\$	299,563	\$	95,092	

Proposal Option 2: 24 lakes during 2 field seasons in 2012 and 2013

The total cost to complete the 2-year project is \$596k, and funds will be spread over 3 calendar years from 2012 to 2014. Additionally, a significant match of approximately \$160k is provided by USGS, USFWS, and MLML in kind. Salary rates include benefits.

2-YEAR PROJECT BUDGET

		Year-1		ar-2	Total		In-Kind Total	
Salary and Benefits	-							
Wildlife exposure determination	\$	64,424	\$	76,679	\$	141,103	\$	76,748
Fish sampling	\$	41,252	\$	42,902	\$	84,154	\$	10,000
Sample Processing and Mercury Determination								
Grebe tissue	\$	24,000	\$	24,000	\$	48,000	\$	-
Fish tissue	\$	24,000	\$	24,000	\$	48,000	\$	-
Supplies								
Field supplies, boat gas, equipment and maintenance	\$	13,500	\$	13,500	\$	27,000	\$	17,250
Lab supplies & equipment	\$	2,000	\$	2,000	\$	4,000	\$	2,000
Travel								
Per diem	\$	14,220	\$	14,220	\$	28,440	\$	-
Lodging	\$	10,890	\$	10,890	\$	21,780	\$	-
Vehicles	\$	9,000	\$	9,000	\$	18,000	\$	1,000
Total Direct Costs	\$	203,286	\$	217,191	\$	420,477	\$	106,998
Indirect Costs	\$	84,750	\$	91,349	\$	176,099	\$	53,056
Total Costs	\$	288,037	\$	308,540	\$	596,576	\$	160,054

Questions Needing Answers

- 1) One or two year study?
- 2) Which lakes to sample?
- 3) Archive samples for other contaminants?
- 4) Sport fish archived until analysis funds can be found?

